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Ada 2005
This article discusses the creation and key new features of Ada 2005
and compares it to other computer programming languages.
by Richard L. Conn 

Ada 2005: A Language for High-Integrity Applications
This article examines how Ada 2005 offers particular innovations that
will help make safety certification less costly and improves support for
high-integrity systems in three major areas.
by Dr. Benjamin M. Brosgol

Intuitive Multitasking in Ada 2005
This article describes Ada multitasking as it now exists. This Ada feature
builds on the same concepts as Java but is considerably safer.
by Dr. Bo I. Sandén 

Ada 2005 on .NET and Mobile and Embedded Devices
This article outlines how the A# project seeks to have the best of both
worlds, by providing an open-source compilation environment for Ada
on the .NET.
by Dr. Martin C. Carlisle

The Ada 2005 Language Design Process
This article discusses the Ada language design philosophy, contrasts
it with the philosophy behind various other programming languages,
and shows how the philosophy helped to ensure a successful, integrated,
and consistent result.
by S. Tucker Taft

Maintaining Sanity in a Multilanguage World
This article discusses the reality of technical issues faced by sustainers of
legacy code while interfacing Ada, C, and C++ from both a syntactical
and runtime perspective.
by Val C. Kartchner

Adapting Legacy Systems for DO-178B Certification
This article shows how it is possible to achieve a cost effective approach
to enable legacy systems to meet DO-178B certification requirements.
by Paul R. Hicks
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From the Sponsor

As Ada has continued to grow and evolve to benefit the software community, so has
CrossTalk. As part of our charter as the U. S. Air Force’s Software Technology

Support Center (STSC), we published our first issue of CrossTalk 19 years ago.
The Air Force centrally funded the STSC, reflecting its commitment to software
process improvement. In addition to creating CrossTalk, the STSC started what is
now the Systems and Software Technology Conference (now in its 19th year), and
developed a corps of expert software consultants and lead Capability Maturity

Model®/Capability Maturity Model Integration appraisers. As a result, the Air Force created an
organization that could be used as a resource for improving software development and acquisi-
tion throughout the Department of Defense.

The STSC has been very successful for 19 years, but the funding has changed. Unfortunately,
faced with extreme fiscal limitations, the Air Force discontinued centrally funding the STSC in
2003. Since that time, the STSC has continued to operate as a primarily fee-for-service opera-
tion. To sustain CrossTalk with no advertising revenue and no subscription fee, the publi-
cation has been maintained through the combined sponsorship of the Air Force’s 76th, 309th,
and 402nd Software Maintenance Groups as well as the Naval Air Systems Command and the
Department of Homeland Security – all government organizations.

As the current CrossTalk co-sponsors, we invite additional co-sponsors from other gov-
ernment organizations to also become co-sponsors. CrossTalk promotes practices that are
customary of world-class organizations, and it makes sense for the best government organiza-
tions to align themselves with CrossTalk. If you consider your organization to be in this cat-
egory, I hope you will consider joining us.

To secure the long-term viability of CrossTalk, we also are investigating commercial
support of CrossTalk via commercial advertisements. Our goal is to maintain the same high
quality, in-depth technical content and the general look and feel of the existing publication with
the addition of an insert listing our commercial supporters. We are interested in your feelings
about this. We would also like feedback from our readers in the private sector who may be inter-
ested in participating with us as potential CrossTalk supporters. Please provide us your
thoughts, inquiries, and support interest and e-mail them to <crosstalk.assocpub@hill.af.mil>.

CrossTalk Co-Sponsors Invite Additional
Government Organizations On Board 

Randy B. Hill
Ogden Air Logistics Center, Co-Sponsor

From the Publisher

Ada Continues to Evolve

Elizabeth Starrett
Associate Publisher

I’ve watched Ada as it has evolved over the years and have been involved in the con-
troversy as various players debated Ada’s future. As a Department of Defense

(DoD) contractor, I was sent to Ada courses because the DoD mandated the use of
Ada on all future software development, and I had to be ready. I even participated in
tutorials explaining Ada 95. But it was not until I became CrossTalk’s associate
publisher that I was completely immersed in the controversy of Ada’s life and death.

Now, as Ada 2005 comes on the scene, many of my colleagues are espousing its
benefits, and I am happy to work with them this month to provide information that will enable
our readers to make their own decisions regarding Ada’s benefits. I have no doubt that the
debates over Ada will continue with Ada 2005. My goal with this issue is to provide some of the
key information that will allow our readers to make their own decisions.
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The needs of the Department of
Defense (DoD) and the capabilities

offered by the Ada programming lan-
guage to support the development of
mission-critical, software-intensive sys-
tems have matched, by design, for more
than two decades. Control of the defini-
tion of Ada has passed from the DoD to
the American National Standards
Institute1 and then to the International
Organization for Standardization (ISO)2.
Likewise, support for the Ada communi-
ty has passed from the DoD to a com-
munity of users and vendors, thereby
eliminating the cost of support for the
DoD. The needs of the DoD have
changed throughout the years, and the
stewards of Ada within ISO have seen to
it that Ada changes as well. Operating in
an open forum with extensive opportuni-
ty for user feedback, the stewards of Ada
have caused it to evolve to continue to
meet those needs as well as the needs of
an international community of users.

Many languages, such as Sun’s Java3,
Microsoft’s C#4, and Visual Basic5, are
owned and controlled by companies.
Languages such as Ada6, C7, and C++8

are instead defined by ISO with no direct
control or enforcement mechanism other
than the free market. Sometimes both
corporate and ISO have control and
ownership in some form, as is the case
with Microsoft’s C#9 and Common
Language Infrastructure10. All languages
are impacted by user feedback because of
their market ties, but the question of
ownership and control can make a deci-
sive difference in language selection with-
in certain application domains.
Developers in domains driven by short-
term market needs and fluctuations are
often happy to follow the latest trends
and let others worry about infrastructure
support, including computer language
support. Developers in domains driven
by long-term (sometimes covering many
decades) product life cycles may need
languages and environments that are
more stable in the long run. Its long-term
stability and ISO-controlled evolution, as

well as its support for safety-critical,
high-integrity, large-scale systems devel-
opment can make Ada attractive to users
developing systems with a long life cycle
such as the DoD.

Today, Ada is used in many domains
in many ways. A theme in several of these
domains is that the systems using Ada
have long life cycles, are safety-critical,
are mission-critical, are large (often con-
taining several million lines of code), and
they require high levels of reliability. So it

is not surprising that we are also finding
Ada in use in several future systems. Ada
continues to be with us (no, Ada is not
dead as some people have come to
believe), and it continues to evolve in the
form of Ada 2005. ISO’s definition for
Ada 2005 was put to bed in November
2005 and should be officially approved
through an international ballot in
November  2006. This article presents an
overview of Ada 2005 and presents
information on how it relates to previous
versions of Ada and other computer pro-
gramming languages.

Stewards of Ada
Ada has been developed in an interna-
tional open forum sponsored by ISO and
the International Electrotechnical Com-
mission (IEC), specifically ISO’s Joint

Technical Committee (JTC) 1. JTC1 is
assigned to deal with all standardization
activities in the domain of information
technology. As of March 2006, 28 coun-
tries participate in JTC1, with another 42
countries registered as observers; JTC1 is
responsible for 538 ISO standards. JTC1
is divided into subcommittees (SCs). SC22
deals with programming languages, their envi-
ronments, and system software interfaces; SC22 is
divided into working groups (WGs). WG9
is responsible for the development of ISO
standards for the programming language Ada.
The people participating in ISO/IEC
JTC1/SC22/WG9, which include users,
vendors, and language lawyers, are the
stewards of Ada; James W. Moore of the
MITRE Corporation is the convener of
WG9. People from the following coun-
tries are most actively involved in WG9:
Canada, France, Germany, Japan, the
Netherlands, Russia, Spain, Switzerland,
the United Kingdom, and the United
States. For more information on ISO and
Ada 200511, visit <www.iso.org/iso/en/
ISOOnline.frontpage>.

Overall Goals for Ada 2005
There are two overall goals for Ada 2005:
• Enhance Ada’s position as a safe,

high-performance, flexible, portable,
interoperable, concurrent, real-time,
and object-oriented programming
language.

• Further integrate and enhance the
object-oriented capabilities of Ada.

As always, upward compatibility with pre-
vious versions of Ada is a prime concern.
Note that Ada 2005 will be published as an
amendment to Ada 95, not a new language.

Over the decades, the developers of
programming languages have been learn-
ing from each other. Ada has influenced
the development of Java, C++, Visual
Basic, and even the Microsoft .NET
Framework. Likewise, Ada has been
influenced by more than 30 other lan-
guages, including Java, C, and C++. The
stewards of Ada designed Ada 2005 to
offer the following:
• At least the safety and portability of

Ada 2005
Richard L. Conn 

Retired (formerly of Microsoft and Lockheed Martin)

Since its formulation in the 1970s, Ada has had a significant impact on the future of government and commercial safety-crit-
ical applications as well as the development of other computer programming languages and environments. This article discusses
the creation and new key features of Ada 2005, and compares it to other computer programming languages.

Ada 2005

“... the systems using
Ada have long life cycles,

are safety-critical, are
mission-critical, are large
(often containing several
million lines of code), and
they require high levels

of reliability.”
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Java.
• At least the efficiency and flexibility of

C and C++.
• An open, international standard for

real-time and high-integrity system
development.

Ada can also take advantage of the enor-
mous libraries of reusable components
created by the developers of other lan-
guages and computing environments. Dr.
Martin Carlisle12 of the U.S. Air Force
Academy, for example, has created the A#
compiler, which can readily make use of
the Microsoft .NET Framework class
libraries and create code in the Microsoft
Intermediate Language for compilation by
the just-in-time compiler in the Microsoft
.NET Framework.

Some Key New Features of
Ada 2005
The key new features of Ada 2005 reflect
both a catching up to update Ada with
ideas that have become popular with
other programming languages, and a leap-
ing ahead to enhance some features of
Ada that are more unique to Ada itself.

Safety First
Some people consider Ada to be the pre-
mier language for safety-critical software,
so the Ada 2005 amendments have been
carefully designed to not open any safety
holes. In addition, some amendments
provide even more safety, in some cases
putting even more load on the Ada com-
piler for catching defects at compile time.

Object.Operation Notation
The familiar and popular object.operation
notation employed in the most popular
languages (such as C++, C#, Java, and
Visual Basic) is now available in Ada
2005. Programmers of Ada 2005 may use
either the operation (object, parameters)
mechanism required by Ada 95 or the
object.operation (parameters).

Extensions to the Open,
Predefined Ada 95 Library
Ada 2005 adds the following new standard
packages that provide features already
found in the implementations and libraries
of other languages:
• Environment variables.
• Time access and manipulation, includ-

ing calendar arithmetic and time zones
(including predefined types like
DAY_NAME and YEAR_NUM-
BER).

• File and directory manipulation.
• Containers and sorting (including a

predefined generic array sort).

• More string functions and wider char-
acters (type WIDE_WIDE_CHAR-
ACTER).

• Linear algebra.

New Features for Real-Time and
High-Integrity Systems
As a language to support safety-critical,
high-integrity systems, Ada 2005 adds sev-
eral new standard features that have been

informally employed by active Ada soft-
ware developers in the past, reflecting user
interests and needs:
• Earliest deadline first, real-time sched-

uling.
• Round-robin, real-time scheduling.
• The Ravenscar high-integrity, run-time

profile13.
The Ravenscar profile promotes sim-

ple and effective language-level concur-

Safety-Critical Issues and Legacy

A recent report puts the cost of downtime at more than $6 million per hour for financial
markets1. The report lists this as the extreme value of downtime (with shipping down-
time being the low end, at $28,000 per hour). However, in the Department of Defense
(DoD), the cost of an hour of downtime could easily be measured not in dollars, but
instead measured in human lives. As a result, extreme efforts have to be taken to ensure
that our safety-critical software does not suffer downtime. To this end, safety-critical lan-
guages have become important, especially in DoD-related software2. While this comes
as no great shock to programmers that C and C++ are not considered safety-critical lan-
guages, Java has matured into a real-time language that is robust enough for real-time
safety-critical applications3. It is worth noting that many have said that Java closely
resembles C++ syntax with Ada semantics4.

Ada is very much a viable language choice for safety-critical embedded and real-
time systems. Some examples follow:
• The C-130J (Hercules) aircraft, manufactured by Lockheed Martin. The C-130J has

been adapted for roles such as airlifters, hurricane hunters, tankers, and electronic
surveillance.

• The F/A-22 (Raptor) advanced tactical fighter, manufactured by Lockheed Martin in
collaboration with Boeing. The stealthy F/A-22, which just recently achieved opera-
tional deployment, is the most advanced fighter in the world, used exclusively by the
United States.

• The F-16 (Fighting Falcon) fighter, manufactured by Lockheed Martin. The F-16 (the
world’s first fourth-generation fighter) is the most widely used fighter in the world,
with more than 4,000 F-16’s deployed by 24 countries in 110 versions.

• The F-35 (Joint Strike) fighter, manufactured by Lockheed Martin. The stealthy F-35
is a multi-role fighter for the next generation, designed for use by the Air Force,
Navy, and Marines as well as many allies of the United States.

• The A380 family of aircraft, manufactured by Airbus. The environmentally friendly,
fuel-efficient A380 passenger jet airliner is the largest passenger jet in existence,
seating as many as 555 people in comfort.

• Many other commercial aircraft. These include the Boeing 777 plus assorted Airbus
and Embraer aircraft, as well as future aircraft such as the Boeing 7E7 prototype.

• The National Ignition Facility (NIF) at Lawrence Livermore National Lab. The NIF
houses the largest LASER facility in the world, used in experiments in high-energy
density and fusion technologies with direct applications to nuclear stockpile stew-
ardship, energy research, science, and astrophysics.

• Air Traffic Control system of the United States. Key elements of the Air Traffic
Control system are used in the United States, 60 other countries, the subways of
New York City and Paris, unmanned vehicles (ground, aerial, and submersible), and
more. 
These systems are not only safety-critical systems, but they have a very long

lifetime (in terms of decades). As such, legacy issues are raised. These systems
must evolve as their requirements change, as their missions change, and as
lessons learned on topics develop, helping them become more secure and reliable.
It is vital that the software they use also evolve with them, and Ada is positioned to
do just that.

Notes
1. See <www.cnsoftware.org/nss2report/Chen-NSS2v.3.pdf>. 
2. See “Correctness by Construction: A Manifesto for High-Integrity Software” by

Martin Croxford and Roderick Chapman, CrossTalk, Dec. 2005 at <www stsc.
hill.af.mil/crosstalk/2005/12/0512CroxfordChapman.html>.

3. See <www.rtj.org/rtsj-V1.0.pdf>.
4. See “Software Standards: Their Evolution and Current State” by Reed Sorensen,

CrossTalk, Dec. 1999 at <www.stsc.hill.af.mil/crosstalk/1999/12/ sorensen.asp>.
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rency, which is essential for safety-critical
applications. It is a subset of the Ada 95
tasking model, which contains restrictions
to meet real-time community require-
ments for the following:
• Determinism.
• Schedulability analysis.
• Memory-boundedness.
• Execution efficiency.
• A smaller memory footprint.
• The need to satisfy certification

requirements, such as Federal Aviation
Administration Aircraft-type certifica-
tion.
The Ravenscar profile includes, but is

not limited to, the following set of restric-
tions and features:
• No task entries are allowed.
• A maximum of one protected entry is

allowed.
• No abort statements are allowed.
• No asynchronous control is allowed.
• No dynamic priorities are allowed.
• No implicit heap allocations are

allowed.
• No task allocators are allowed.
• No task hierarchy is allowed.
• The maximum length of an entry

queue is one.
• Protected types are not allowed.
• Relative delays are not allowed.
• Requeue and select statements are not

allowed.
• Task termination is not allowed.
• User-defined timers and local timing

events are not allowed, but execution
timers (to help catch task overruns) are
allowed (and predefined in the Ada
2005 library).

Popular Interface Approaches
Ada 2005 now supports the notions of

interface used in languages such as Java
and C#, and architectures such as
CORBA. To address a common user need,
Ada 2005 adds a new pragma called
Unchecked_Union for interoperating with C
and C++ libraries. Interface types have
been added, and Ada 2005 leaps ahead with
the notion of both active and passive syn-
chronized interface types that efficiently
integrate object-oriented programming
concepts with real-time programming
concepts.

Enhanced Encapsulation
Ada 2005 fully supports both module and
object encapsulation. With module
encapsulation (as already supported by

Java), no synchronization is implied, and
access within the module is restricted to
private components of a type to the
module in which the type is declared (that
is, you cannot refer to the internals of a

module outside of that module). Private
components of multiple objects may be
referenced simultaneously. With object
encapsulation (as already supported by
Eiffel), access to an individual object is
synchronized. Only operations inside a
protected or task type can manipulate
components of a locked object.

Access Types Enhanced
Ada 95 has been considered too rigid by
some in its definition of access types. In
many cases, a significant number of
explicit conversions are required to access
anonymous objects and parameters. Ada
2005 adds anonymous access types to remove
the need for so many conversions.

Dependency Issues Resolved
Addressing a fairly common user need,
Ada 2005 adds support for cyclic depen-
dence between types in different pack-
ages. Limited with clauses allow a limited
view of a package, thereby permitting
types to be defined across package
boundaries.

Figure 1 shows the three key areas
addressed by Ada 2005 (full object-orien-
tation, space and time efficiency, and
hard and soft real-time requirements),
and the key new features related to them
such as earliest deadline first scheduling.

Ada Resources
A number of compilers, development
platforms, tools, training and education
aids, reusable software components, and
other resources are available through the
global community of Ada users and ven-
dors. Migration in several forms is now
taking place to support development
using Ada 2005, and the single best start-
ing point for engaging with the Ada com-
munity is the SIGAda Web site at
<www.sigada.org>.

The Association for Computing
Machinery (ACM) has just completed a
review of its special interest groups
(SIGs), and while many SIGs are losing
membership and viability, SIGAda has
been found to continue to be a viable
part of the ACM. ISO and SIGAda will
continue to be the key focal points for
the distribution of information on Ada
2005 and its predecessors and successors.

There are four major Ada compiler
vendors: AdaCore (GNAT Pro), Aonix
(ObjectAda), Green Hills (AdaMulti),
and IBM Rational (Apex). There are also
several smaller Ada compiler vendors:
DDC-I, Irvine Compiler, OCSystems,
RR Software, and SofCheck. Finally, there
are several vendors providing tools in sup-
port of Ada software development includ-

Multiple

Interface

Inheritance

Default Static

Binding

Earliest

Deadline First

Scheduling

Building

Blocks

Full Object-

Orientation

Hard and Soft

Real-Time

Space and Time

Efficiency

Active and Passive

Synchronization Interfaces

Safety

Portability

Interoperability

Figure 1: Ada 2005: Putting It All Together

“Ada has influenced the
development of Java,
C++,Visual Basic, and

even the Microsoft .NET
Framework. Likewise, Ada
has been influenced by
more than 30 other

languages, including Java,
C, and C++.”
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ing, but not limited to: Grammatech, IPL,
LDRA, PolySpace, Praxis, and Vector.

Conclusion
Ada 2005 is with us now, and as users
become familiar with and ask for the new
features, Ada compiler vendors will
respond to the users and implement those
features. By no means does the evolution
of Ada stop now. The needs of the devel-
opers of high-reliability, mission-critical,
safety-critical, and high-performance sys-
tems will continue to change, and by ISO
requirement, as long as Ada is an ISO
standard, it will continue to be reviewed
and updated periodically (on the order of
every five years). Ada is here for the long
run, and developers of essential systems
for the long run should continue to con-
sider Ada.u

Special Acknowledgement
I wish to acknowledge and give a special
thank you to Dr. David Cook for his early
review of this article and commentary.
Some of his words appear in the sidebar,
and his insight and experience, as always,
has been appreciated.

Notes
1. See <www.ansi.org>.
2. See <www.iso.org>.
3. Visit the Sun Developer Network’s

Java Technology Web site at <http://
java.sun.com>.

4. Visit the Microsoft Developer Net-
work’s C# Developer Center at
<http://msdn.microsoft.com/vc
sharp>.

5. Visit the Microsoft Developer’s
Network Visual Basic Developer
Center at <http://msdn.microsoft.
com/vbasic>.

6. See ISO/IEC Standard ISO/IEC
8652:1995, “Information Technology
– Programming Languages – Ada.”

7. See ISO/IEC Standard ISO/IEC
9899:1990, “Programming Languages
– C” and ISO/IEC Standard ISO/
IEC 9899:1999/Cor 1:2001, “Pro-
gramming Languages – C – Technical
Corrigendum 1.”

8. See ISO/IEC Standard ISO/IEC
14882:2003, “Programming Lan-
guages – C++.”

9. See ISO/IEC Standard ISO/IEC
23270:2003, “Information Technology
– C# Language Specification.”

10. See ISO/IEC Standard ISO/IEC
23271:2003, “Information Technology
– Common Language Infrastructure.”

11. Ada 95 is formally identified as ISO/
IEC 8652:1995, “Information Tech-
nology – Programming Languages –

Ada.” Minor changes to it were ap-
proved and published in June 2001 as
ISO/IEC 8652:1995: COR.1: 2001:
“Technical Corrigendum to Information
Technology – Programming Lan-
guages – Ada.” Ada 2005 will formally
be published as an amendment to
ISO/IEC 8652:1995.

12. See Martin Carlisle’s Web site at
<www.martincarlisle.com> for infor-
mation on and access to his work on
the A# compiler, a set of Ada-orient-
ed utilities, AdaGIDE (an Integrated
Development Environment for Ada
used at the U.S. Air Force Academy),
and Rapid Ada Portable Interface
Designer, also covered in this issue of
CrossTalk.

13. See ISO/IEC TR 24718:2005,
“Information Technology – Program-
ming Languages – Guide for the Use
of the Ada Ravenscar Profile in High
Integrity Systems.”
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Ahigh-integrity application is one whose
failure would cause unacceptable

costs, or for safety-critical systems, create
risks to human health or life. Examples of
high-integrity applications include aircraft
avionics, weapons systems, and shipboard
control. Business-critical software can also
qualify as high-integrity if a failure could
cause significant economic damage,
expose confidential data, or have other
similar consequences. Developing such
applications presents difficult challenges.
The programming language chosen has an
important effect based on how well it
meets the following requirements:
• Reliability. The language should sup-

port the development of programs
that can be demonstrated to work cor-
rectly and should help in the early
detection of errors in programs. This
may sound obvious, but the various
goals that a language design seeks to
achieve (ease of writing, run-time effi-
ciency, expressive power) can some-
times involve a trade-off with program
reliability.

• Safety. Although related to the goal of
reliability, safety is worth noting as a
separate requirement. Informally, safe-
ty in a programming language means
being able to write programs with high
assurance that their execution does not
introduce hazards (i.e., the system does
not do what it is not supposed to do).
This translates into language require-
ments related to program predictabili-
ty and analyzability in order to allow
the system to be certified against safe-
ty standards such as Document Order
(DO)-178B [1]. For example, the
developer must be able to demonstrate
that run-time resources (such as stack
space) are not exhausted [2].

• Expressiveness. High-integrity appli-
cations fall across a variety of domains
(real-time, distributed, transaction-ori-
ented, etc.) and the programming lan-
guage or its associated libraries must

provide the appropriate functionality.
For example, a real-time system gener-
ally comprises a set of concurrent
activities (either time or event-trig-
gered) that interact either directly or
through shared data structures. It must
be possible to express such functional-
ity with assurance that deadlines are
met and that shared data are not cor-
rupted by simultaneous access.

This article focuses on how Ada 2005 [3,
4] offers enhancements in each of these
areas. The emphasis is on new capabilities,
but there is also a brief mention of Ada’s
existing support for these requirements.
Although the reader might not be familiar
with Ada, general programming experi-
ence with a language such as C, C++, or
Java is useful, and some sections assume
acquaintance with specialized topics such
as object-oriented programming (OOP),
multi-threading, and real-time scheduling.
An introduction to OOP in an Ada con-
text can be found in John Barnes’ Ada 95
Rationale [5]; a comprehensive treatment
of concurrency and real-time issues and
approaches is provided in [6].

Reliability
Reliability as a language design goal
implies support for software engineering.
This indicates a prevention of errors with
detection at compile time if possible and
avoidance of pitfalls where a program
does something other than what its syntax
suggests. Ada’s design was based on these
principles. Specific features include strong
typing, checks that prevent buffer overflow,
checks that prevent dangling references (i.e.,
references to data objects that have been
reclaimed), a concurrency feature (pro-
tected objects) that offers a structured and
efficient mechanism for guaranteeing
mutually exclusive access to shared data,
and an exception handling facility for
detecting and responding to deviant run-
time conditions such as improper input
data. Ada 2005 enhances this support in

several areas:
• OOP. One of the essential elements

of OOP is inheritance. A new class (the
subclass) is defined as a specialization
of a parent class (the superclass), and
methods from the superclass are
either explicitly overridden or implicit-
ly inherited. However, misspelling a
method name when defining a new
subclass or adding a new method
when revising an existing superclass,
may introduce hard-to-detect bugs
unless the language provides appropri-
ate features. For example, inheriting
from a class that defines a method
named Initialize, and attempting to
override it but misspelling the name as
Initialise, results in the unintended
implicit inheritance of the superclass’
Initialize method. Dynamic binding to
Initialize will invoke the superclass’
version of the method, which is not
what the programmer expected. As
another example, adding a method to
a superclass when a subclass already
has a method with the same name and
parameter types causes the subclass’s
method to override the superclass’s
method. This, too, causes unexpected
effects on dynamic binding. Ada 2005
introduced new syntax that a pro-
grammer can use to detect both kinds
of errors at compile time. This is
more reliable than C++ (which lacks
any mechanism) and Java (which pro-
vides an annotation that can detect
unintended inheritance but does not
have a means to detect unintended
overriding).

• Read-oonnllyy parameters. Ada’s ap-
proach to subprogram formal parame-
ters, unlike most other languages,
encourages the programmer to think
in terms of logical direction of data
flow rather than physical implementa-
tion (by copy or by reference). Thus,
Ada has always supplied the in parame-
ter mode, corresponding to data being
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passed from the caller to the called
subprogram. Assignment to an in para-
meter is prohibited. Even if the imple-
mentation passes the actual parameter
by reference, the object that is passed
cannot be modified through an assign-
ment to the formal parameter. This is
extremely useful in ensuring the
absence of unwanted updates since
the compiler would detect such
attempts as errors. However, the Ada
95 mechanism for so-called access para-
meters, which allowed passing a point-
er to a declared data object (analogous
to * parameters in C) did not include a
way to protect the referenced object
from being modified. That gap is now
filled, with the ability to specify sub-
program parameters as pointers to
constants. The called subprogram may
use the formal parameter to read the
value of the referenced object but not
to perform assignments to the object.
This capability is not new in program-
ming languages (it is available in C and
C++, for example, through the * const
syntax), but it is lacking in Java, which
provides no mechanism for constrain-
ing a method to have read-only access
to the object denoted by a parameter.

• Assertions. Ada 2005 has introduced
a compiler directive – pragma Assert –
through which the programmer can
specify a logical condition that is
known to be true. In its simplest form,
it appears as pragma Assert (expr)
where expr is an expression that
returns a Boolean result (i.e., either
True or False). When control reaches
the point in the program where the
pragma appears, expr is evaluated. If it
is True, then execution continues nor-
mally. If it is False, then the
Program_Error exception is raised and
standard exception handling/propaga-
tion semantics apply. This pragma was
implemented by several Ada 95 ven-
dors and produced enough general
interest to be incorporated into Ada
2005. It provides a convenient and
readable notation for specifying many
kinds of pre-conditions, post-condi-
tions, and invariants, thus facilitating
static analysis and formal reasoning
about programs.

• Avoidance of race conditions dur-
ing system initialization. If a pro-
gram uses concurrency features
(known as tasks in Ada), there are
potential problems at program startup
if, for example, a task reads the value
of a global variable before the variable
has been initialized. Such a hazard is
traditionally known as a race condition. A

new compiler directive in Ada 2005,
pragma Partition_Elaboration_Policy,
allows the programmer to prevent this
problem by deferring task activation
until after data initialization.

• Avoidance of silent task termina-
tion. This hazard in high-integrity sys-
tems – the implicit termination of a
task because of an unhandled excep-
tion or an abort – has been addressed
in Ada 2005 with a new mechanism
for setting user-defined termination
handlers. Such a handler is invoked
when the associated task is about to
terminate. This allows a controlled
response at run-time, for example,
keeping track of such events for post-
mortem analysis.

Safety
Although DO-178B was originally devised
as guidance for commercial aircraft devel-
opers, it is applicable more generally on
any system where high confidence in cor-
rectness is required, and it is being cited
increasingly on defense software projects.
The document, comprising a set of 66
guidelines, focuses on the soundness of the
development process and has a particular
emphasis on testing as a verification tech-
nique. DO-178B, though largely silent
about particular languages or language
features, implies several requirements that
relate to programming language issues:
• Predictability. The time and space

demands for the system must be pre-
dictable. It is unacceptable to miss the
deadlines of safety-critical tasks or to
exhaust stack space or dynamic mem-
ory.

• Analyzability. The code must be stat-
ically analyzable, both by humans and
by software tools. This is needed to
support traceability (each software
requirement must be traceable to code
that meets that requirement, and all
code must be traceable back to a
requirement that it meets) and struc-
tural coverage analysis.
Unfortunately, these requirements

conflict with other important goals such
as expressiveness and maintainability. The
following are examples of conflicts:
• Dynamic features. Many modern

programming languages, including
Ada, have features such as exception
handling and concurrency that offer
considerable generality, but at the price
of run-time libraries that are too com-
plex for safety certification. For com-
pliance with standards such as DO-
178B, simple features work best.

• Object-oriented programming. The
use of OOP in safety-critical systems

is a subject that has been attracting
considerable attention in recent years
and is addressed in detail in the multi-
volume handbook, Object-Oriented
Technology in Aviation [7], evolved under
the auspices of the Federal Aviation
Administration and National Aero-
nautics and Space Administration.
Two essential characteristics of OOP
are polymorphism (the ability of a vari-
able to reference objects from differ-
ent classes at different times) and
dynamic binding (resolving a method call
based on the class of the object that
the method is invoked on). But poly-
morphism implies pointers and thus
dynamic memory management, which
interferes with predictability. Dynamic
binding implies not knowing until run-
time the method invoked, which inter-
feres with analyzability.
Ada 2005 addresses these issues in sev-

eral ways:
• Language profiles. With the excep-

tion of specialized languages such as
SPARK [8], which was specifically
designed for safety-critical and securi-
ty-critical systems, it has always been
necessary to define language subsets,
or profiles, in order to ensure certifi-
able run-time libraries and pre-
dictable/analyzable application code.
The question has been how such sub-
sets have been defined. Ada 95 intro-
duced a compiler directive, pragma
Restrictions, which gave this control to
the programmer. The programmer can
use this pragma to specify exactly
which features are needed, thus defin-
ing a profile in an á la carte fashion. Ada
2005 extends this mechanism with an
additional directive, pragma Profile,
that allows the formalization of a spe-
cific set of features under a common
name (this is the way in which the
Ravenscar profile, discussed next, has
been formalized). In brief, the Ada
design recognizes the reality, described
in an International Organization for
Standardization report [9], that there is
no such thing as the safety-critical lan-
guage profile; rather, there are differ-
ent profiles based on the analysis tech-
niques that are used in certification.
For safety-critical systems, Ada 2005
can be regarded as a family of lan-
guage profiles, with the precise set of
features in any given profile defined by
the application programmer.

• Ravenscar profile. Named for the
venue of a workshop where it was first
defined, the Ravenscar profile [10, 11]
is a set of Ada tasking features that are
powerful enough to be used for real-
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world applications but simple enough
to be certifiable against standards
such as DO-178B. A program that
adheres to the Ravenscar profile com-
prises a set of tasks; each task is
defined as a loop with a single point
where it may be blocked waiting for a
timeout or an event. This style
straightforwardly expresses a periodic
task or a task that handles asynchro-
nous events such as keyboard input or
messages from external devices. More
general tasking features (such as task
abort and asynchronous transfer of
control) that would complicate safety
certification are prohibited. A major
advantage of the Ravenscar profile is
that it allows a program to be
expressed naturally as a set of tasks, a
design that directly reflects the system
requirements and is easy to maintain.
The traditional alternative is the cyclic
executive style, which is brittle in the
presence of maintenance changes.
Ada 2005 has incorporated the
Ravenscar profile into the language,
thus making it a formal part of the
standard.

• Safe OOP. Ada’s OOP model offers
several benefits in connection with
safety certification. First, as noted ear-
lier, Ada 2005 has introduced syntax
that helps avoid some subtle OOP
errors in connection with inheritance.
Second, it is possible, especially
through pragma Restrictions, to avoid
using OOP features that could inter-
fere with analyzability. For example,
the programmer can safely use tagged
types (classes), encapsulation, and
inheritance, but avoid dynamic bind-
ing. Third, Ada 2005 has extended
Ada 95’s OOP model to include Java-
like interfaces, thus making it easier to
express multiple inheritance without
needing complicated idioms. Finally,
automated program transformations
are possible that convert a program
using dynamic binding to an equiva-
lent version that uses more traditional
constructs. If such a tool is qualified
(in the DO-178B sense) then the ana-
lyzability concerns mentioned here in
connection with dynamic binding
would be addressed.

• Safety-oriented pragmas. Ada 2005
introduces several pragmas that are
relevant to safety-critical programs.
Pragma Unsuppress can be used to
locally enable language-defined
checks, thus overriding the effect of a
pragma Suppress that may have been
applied as an optimization. Pragma
Unsuppress is useful in algorithms

that depend on the raising of a prede-
fined exception. Pragma No_Return
identifies a procedure that never
returns to the point of call; it either
loops forever (for example, a main
routine in a process control system) or
else always raises an exception (for
example, to indicate detection of
some abnormality at run-time). This
pragma may be useful for some static
analysis tools.

Expressiveness
Many high-integrity applications are real-
time systems, requiring language features
or libraries that support concurrency and
the expression of periodic (time-trig-
gered) as well as aperiodic (event-trig-
gered) activities. A particularly important
consideration is the management of prior-
ity inversion, a situation in which a lower-
priority task prevents a higher-priority
task from running. Some priority inver-
sions are necessary, such as when a high-
priority task needs to be blocked because
it is trying to access a shared object that is
currently being used by a lower-priority
task. The key is to predict the maximum
blocking time for each task and to mini-
mize this bound so that deadlines can be
guaranteed and available processor capac-
ity can be exploited.

These needs are actually well met by
the Ada 95 tasking model, which intro-
duced several important constructs:
• Standard task dispatching policy.

Ada 95 formalized a traditional fixed-
priority scheduler, basically run until
blocked or pre-empted, with tasks at a
given priority level serviced in first-in
first-out (FIFO) fashion.

• Protected objects. The protected
object mechanism captures the notion
of an encapsulated object (preventing
direct and thus error-prone access to
state data) with mutual exclusion and
condition synchronization. The typi-
cal concurrency pattern of multiple
tasks interacting through a shared data
object (where a task might need to not
only acquire a mutually exclusive lock
on the object, but also wait until the
state of the object satisfies a particu-
lar condition) can be expressed clear-
ly, reliably, and efficiently through a
protected object and its operations.

• Ceiling locking policy. With the
ceiling locking policy, a task perform-
ing an operation on a protected object
will inherit the priority that is defined
as that object’s ceiling. This policy
minimizes priority inversions, and
with Ada’s semantics for non-block-
ing protected operations, it prevents

certain forms of deadlock.
Ada 95 is especially well suited to off-

line (pre-runtime) schedulability analysis,
which allows the developer to predict
whether all deadlines will be met.
Building on Ada 95’s foundation, Ada
2005 extends the language’s support for
real-time systems. The following is a sum-
mary of the most prominent new fea-
tures:
• Dynamic ceilings. In Ada 95, the

ceiling priority of a protected object
must be set at compile time. Ada 2005
is more flexible and allows a ceiling to
be changed at run time. This is useful
when the ceiling must reflect a chang-
ing set of task priorities, for example,
due to mode changes such as the transi-
tions among the takeoff, cruise, and
landing modes for aircraft.

• Non-pre-emptive scheduling. In
some environments, especially for
high-integrity systems, the complexity
and overhead of pre-emptive schedul-
ing are not desirable, and the applica-
tion is prepared to pay the cost of
higher latency (less immediate
responses to events). Ada 2005
accounts for this need with a new task
dispatching policy where a task will
run until it either blocks itself (for
example, by executing a delay state-
ment) or completes.

• Round-robin scheduling. This tra-
ditional policy is useful when there is
a need for fairness in task scheduling.
Ready tasks at the highest priority
level are time-sliced at a user-specified
interval. This is still a fixed-priority,
pre-emptive policy; low-priority tasks
are not implicitly bumped in priority
based on how long they have been
pre-empted. Round-robin scheduling
may be summarized as run until blocked,
pre-empted, or time-slice expiration.

• Earliest deadline first (EDF)
scheduling. EDF scheduling in Ada
2005 is a dynamic-priority policy in
which deadlines and not just priorities
are used to dictate which ready task is
given the processor. A priority range
can be assigned to be governed by the
EDF policy. EDF is useful for maxi-
mizing system responsiveness, but is
less predictable than fixed-priority
policies in the presence of overload.

• Multiple scheduling policies. Ada
2005 allows different compatible poli-
cies to coexist for the same applica-
tion. This is done by associating task
dispatching policies with specific pri-
ority levels. For example, the applica-
tion can reserve a range of low prior-
ities for non-real-time tasks that will
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be governed by round-robin schedul-
ing and higher priorities for real-time
tasks that require pre-emptive sched-
uling that is FIFO-within-priorities.

• Timing events. Ada 2005 provides a
lightweight mechanism for defining
asynchronous, time-based events with
associated handlers.

• Group budgets. Classical scheduling
theory deals with aperiodic tasks by
grouping them together as a concep-
tual periodic task with a total budget
that is replenished each period; the
period is based on the interarrival
times of the aperiodic events that the
tasks are handling. This functionality
can be implemented in Ada 2005
through a group budgets package that
allows a user-specified handler to run
when the budget has been depleted.

• Execution time monitoring.
Schedulability analysis depends on
the correctness of the values provid-
ed for task cost (execution time),
deadline, and period. This raises the
issue of the effect when a task
exceeds its cost budget. Ada 2005
addresses this issue through a pack-
age that allows tracking of central
processing unit time on a per-task
basis that also provides user-defined
handling of cost-overruns.
In addition to these real-time orient-

ed enhancements, Ada 2005 offers a
number of other features that increase
the language’s expressiveness. It is out-
side the scope of this article to cover
these in-depth but the following are
some brief examples of the new features
that may be of use in high-integrity
applications:
• More flexible program structuring.

Ada 2005 allows interdependent pack-
age specifications, making it easier to
model and interface with class
libraries as defined in languages such
as Java.

• Unification of concurrency and
OOP. Ada 2005 introduces the con-
cept of a Java-style interface that can
be implemented by either a sequential
or tasking construct, providing a level
of abstraction that is not found in
other languages.

• New libraries. Ada 2005 adds con-
siderable functionality to the prede-
fined environment. There are new
packages, for example, for vectors and
matrices, linear algebra, and 32-bit
character support. A comprehensive
containers library provides facilities
somewhat analogous to the C++
Standard Template Library. The defin-
ition of high-integrity versions for

some of these libraries is in progress.
• Improved interfacing. Ada 2005

extends Ada 95’s interfacing mecha-
nism, making it easier to construct
programs that combine Ada code with
modules from C, C++, or Java.

Conclusions
High-integrity software can, in principle,
be written in any computer language, but
the effort will be simplified by choosing
an appropriate language – one that is
designed for reliability and safety with
expressiveness to capture a broad range
of applications including real-time sys-
tems. Both the original Ada language and
the Ada 95 revision meet these require-
ments, and Ada 2005 has continued in
this vein. Among its enhancements are
safer OOP, a certifiable tasking subset
(the Ravenscar profile), a way to ensure
that pointed-to parameters are read-only,
a standard feature for defining language
profiles, mechanisms for avoiding hazards
such as race conditions at system startup
and silent task termination, and a variety of
new task dispatching policies that are rel-
evant for real-time systems. Importantly,
Ada 2005 is real: commercial implementa-
tions are in progress, including one that is
available at present. Ada 2005 is also at
the forefront of real-time study in acade-
mia, both influenced by and inspiring
research on concurrency, scheduling theo-
ry, and related real-time subjects.

Ada has always been an attractive lan-
guage for high-integrity and safety-critical
systems. Advancing the state of the art,
Ada 2005 is continuing this tradition and
promises to see expanded usage and inter-
est based on its many valuable enhance-
ments.u
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Ada was first released in 1983 with high
ambitions. Unfortunately, it came

across as large and complicated. Its
approach to multitasking, although innov-
ative, proved unsuccessful. It was built on
the rendezvous concept [1], which is ele-
gant in theory, but was an unnecessary
departure from the long, practical tradi-
tion with threads and shared objects as
separate, interacting entity types. Ada 95
remedied this problem and further
evolved into Ada 2005. Now, the multi-
tasking facilities in Ada are conceptually
mainstream, at the same time much less
error prone than in other languages.

This article describes Ada multitasking
as it now exists. It is intended for develop-
ers of multithreaded systems in other lan-
guages and for those who may consider
redesigning systems to take advantage of
multi-core chips and other types of multi-
processors. Programmers in some lan-
guages use POSIX threads [2, 3], which
are created by routines with a standardized
interface. Other routines operate on
mutex variables in order to give threads
exclusive access to shared data. Support
that is built into the language syntax as in
Ada and Java is safer and easier on the
programmer because it abstracts low-level
operations such as the mutex manipula-
tion. A multitask Ada program will run
under symmetric multiprocessing.

From the beginning, Ada was designed
to meet the predictability and reliability
requirements of dependable systems.
Over time, those kinds of systems, which
are typically embedded real-time systems,
formed Ada’s niche. Ada supports hard
real time. In hard real time, computations
must finish by certain, absolute deadlines
to avoid dire consequences. If an appro-
priate scheduling algorithm is used, a set
of periodic tasks provably meets its dead-
lines. Ada supports rate-monotonic and
earliest deadline first scheduling.

There is an important category of sys-
tems that have no conflicting, hard dead-
lines, but still need to be robust. Many of
these systems must perform a periodic
function reliably. For example, a cruise
controller must adjust the throttle with

consistent intervals for a smooth ride, but
without absolute deadlines. A building
monitoring system may need to check
every one of hundreds of sensors every
two seconds, but there are no dire conse-
quences if the interval is a little longer.
Interactive systems need to respond to
human input in a consistent and timely
manner, but without hard deadlines.

Ada was always intended for high-
integrity systems while Java was originally
meant for Windows programming and
applets. The real-time specification for
Java (RTSJ [4, 5]) does not make the lan-
guage less error-prone1. It is easy to make
the case that Ada is much safer than Java
in this respect [6, 7]. Unlike Java, but like
C++, Ada is a hybrid language; you can
program entirely without classes. This can
be important in hard, real-time environ-
ments where some object-oriented fea-
tures may be deemed too inefficient.

This article focuses on Ada’s support
for intuitive multitasking without conflict-
ing, absolute deadlines. This intuitive
approach can produce elegant, simple,
and efficient programs with tasks mod-
eled on entities in the problem domain [8,
9]. A job that is processed in a flexible
manufacturing system (FMS) is an exam-
ple of such an entity [8, 10]. Flexible man-
ufacturing differs from production lines.
Each job task waits for access to one
workstation at a time and for access to
devices such as forklifts. The task
describes the life of a job while resources
such as the workstations and the devices
can be modeled by means of protected
objects. Other aspects of the problem
also map directly onto Ada features. The
following are various language features
and examples of how to use them in intu-
itive multitasking.

Protected Objects
A protected object is a data structure that
is encapsulated to make it task safe, which
means that multiple tasks can operate on it
without risk of conflict; each operation on
the object always finishes before the next
one starts. Protected objects have lock
variables, which are inaccessible to the

programmer. The compiler inserts the
necessary operations on the locks.

A protected type can have protected
operations of three kinds: functions, proce-
dures, and entries. These are declared in the
protected-type specification as in this
example:

protected type X is
function F1(  ) return Type1;
procedure P1 ( );
entry Acquire ( … );

private
-- Attribute variables
-- Private operations including

interrupt handlers
end X;

You can also declare a single protected
object. The following are differences
between protected functions, protected
procedures, and entries:
• Protected functions are read-only. They

cannot change the protected object’s
attributes and are subject to a read
lock; simultaneous function calls on a
given object are allowed, but not dur-
ing a procedure or entry call on the
object.

• Protected procedures can change the
attribute values. They are subject to a
write lock; only one procedure (or
entry) call at a time is allowed on a
given object, and not during any func-
tion call.

• Like protected procedures, entries can
change attribute-variable values and
are subject to the write lock. In addi-
tion, each entry has a barrier condi-
tion, which must be true for a call on
the entry to proceed. For example, an
entry Acquire that is to be performed
only when the number of items avail-
able is greater than zero can be speci-
fied in the body of the protected type
as follows:

entry Acquire ( ... ) when Available > 0 is ...

If a task calls Acquire when the
attribute variable Available is equal to zero,
it is queued. Each protected object has

Intuitive Multitasking in Ada 2005 

As multiprocessors become common, more software must be multithreaded in order to take advantage of the added process-
ing power. Programming in a language with multithreaded support is easier and less error-prone than with stand-alone thread
packages. Multitasking in Ada 2005 builds on the same concepts as Java but is considerably safer. 

Dr. Bo I. Sandén 
Colorado Technical University

12 CROSSTALK The Journal of Defense Software Engineering August 2006



August 2006 www.stsc.hill.af.mil 13

one queue per entry. This is different from
Java, where each synchronized object has
a single wait set. Otherwise, a barrier
works quite similarly to a wait loop while
(condition) wait( ), placed at the very begin-
ning of a synchronized operation in Java.

Protected objects are similar to Java’s
synchronized objects, but much less prone
to mistakes and misunderstandings on the
part of the programmer [7]. All the oper-
ations are protected while in Java. In Java,
it is up to the programmer to make select-
ed operations synchronized.

Use
Protected objects represent shared
resources in the problem domain such as
workstations and forklifts in the FMS
example. A job task acquires a forklift by
the call Forklift.Acquire on a protected
object Forklift. It releases the forklift by
calling Forklift.Release. Release is a protect-
ed procedure that increments the variable
Available and opens the barrier for other
job tasks.

While a job is waiting for a resource, its
task is queued on a protected entry. This
means that Acquire’s task queue models
the queue of waiting jobs in the factory.
Ada gives the programmer provisions for
managing such a queue. For example, a
task can be removed from the queue if
necessary [10].

Requeuing
The Java style with a wait loop as part of
the body of a synchronized operation is
flexible. For example, a synchronized
method in Java can have multiple wait
loops; a thread can effectively execute the
synchronized operation in segments sepa-
rated by calls to wait where the thread
releases its object lock [7]. Each time it is
reactivated from the wait set, it enters a
new segment with the lock re-established.

The requeue statement in Ada
achieves the same effect. It allows a task
that is executing an entry to suspend itself
and place itself on the queue of the same
or another entry. The syntax for requeuing
to an entry called Wait is as follows:

requeue Wait;

There are no parameters. The requeuing
entry must have the same parameters as
the entry in whose body the requeue state-
ment appears.

Use
As mentioned previously, protected
objects with operations such as Acquire
and Release can represent resources in the
problem domain. Requeuing is the only

way to handle a delay during the resource
allocation. A high-priority entity may force
an entity holding a resource to relinquish
it. The high-priority task can requeue itself
while the lower-priority task takes appro-
priate measures to relinquish the resource
and call Release [8].

Protected Interfaces
Java and CORBA popularized the inter-
face as a syntactic concept [11]. In Ada
2005, a type can implement any number of
interfaces in addition to extending a base
type. As in Java, an interface is very simi-
lar to an abstract class without data where
all the operations are abstract2.

In Ada 2005, protected types can
implement protected interfaces 3. Like other
interfaces, they allow polymorphism. This
addresses, to a degree, an awkwardness in
Ada 95, which introduced both protected
types and extensible types, but did not
combine the two by allowing protected
types to be extended [12].

If a number of protected types imple-
ment the same protected interface S, you
can reference their instances by means of
access variables with a target of type
S’Class. Ada distinguishes between a type
such as S and the polymorphic, class wide
type S’Class, which can refer to instances
of S and its descendants. An access vari-
able is essentially a pointer to an object of
the target type.

Use
In a program that deals with devices of
different types where each type needs its
own driver, you could declare a protected
interface with an operation Initialize as in
the following example:

type Device_Handler is protected inteface;
procedure Initialize (D: in out Device_     
Handler) is abstract;

The interface is implemented by various
device-handler types as Device_Type1 in
this example:

protected type Device_Type1 (Device_   
Number : Natural) is 

new Device_Handler with 
procedure Initialize;

. . .
end Device_Type1;

The body of the protected type contains
the logic of the procedure Initialize for this
particular device type. Device_Number is a
discriminant, which allows you to give
unique information such as a device num-
ber to each instance.

You can now declare an array of
pointers to device drivers as follows:

Driver_List : array ( … ) of access   
Device_Handler’Class; 

A loop such as the following invokes the
initialization procedure appropriate for
each array element:

for D in Driver_List’Range loop
Driver_List(D).Initialize;

end loop; 

For each value of D, the call
Driver_List(D).Initialize binds at runtime to
the Initialize procedure appropriate for the
type of device at Driver_List(D).

Asynchronous Transfer of
Control
Like RTSJ, Ada provides for asynchro-
nous transfer of control (ATC). With
ATC, the programmer can arrange for a
computation to be cut short if a triggering
event should occur before the computa-
tion is complete. A common example is an
algorithm that iteratively improves an
approximate result until it converges to a
value with a certain precision. If the cal-
culation does not converge within a cer-
tain time limit, a real-time system may
need to terminate it and use the best
approximation available. The trigger in
this case is the event that the time limit is
reached.

Ada’s ATC syntax is considerably sim-
pler than that in RTSJ [4, 5]. Ada imple-
ments ATC by means of abortable tasks.
It uses an asynchronous select statement such
as the following:

select delay until Next_Reading;
then abort

-- “Abortable sequence” 
end select;

“Protected objects are
similar to Java’s

synchronized objects,
but much less prone to

mistakes and
misunderstandings on

the part of
the programmer.”

Intuitive Multitasking in Ada 2005 
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This works as follows: The abortable
sequence starts. If it has not ended by
the time Next_Reading, it is aborted.

You can also express the trigger in
terms of elapsed central processing unit
time. This is useful in real-time systems
with hard deadlines, where each periodic
task is given a maximum amount of
processor time per period. Finally, the
triggering event can be the acceptance of
a certain call on a protected entry. The
following example illustrates the last case.

Use
In the FMS, each workstation has an
input stand, a tool, and an output stand.
A job can sit on the output stand of a
workstation and wait for its next work-
station to become available. The job
may still be on the output stand when
the next job is finished in the tool and
needs the stand. In that situation, the
first job must clear the stand and be
staged in a storage area; the job task
must be prepared to handle whichever
comes first of two possible events: the
next workstation becomes available, or
the job is ordered to clear the stand.
Both are entry calls. This is expressed by
the following statement:

select 
WS.Request; 

then abort
X.Clear;
-- “Additional statements”
-- (Stage job in storage)     

end select;

The trigger, WS.Request, is the request for
the next workstation, which is accepted
when that workstation becomes available.
The abortable sequence starts with the call
X.Clear, which is accepted when the next
job is done in the tool. This makes for a
race between those two events: WS.Request
is accepted and X.Clear is accepted. One
will happen first, and then the other one is
aborted. If X.Clear is accepted, the call
WS.Request is aborted and the additional
statements execute. If WS.Request is
accepted, the call X.Clear is aborted and
the additional statements never execute.
The ATC logic arbitrates the outcome of
the events even if they happen at practi-
cally the same time.

Interrupt Handlers and
Timing Events
As a language intended for embedded sys-
tems from the beginning, Ada allows the
programmer to specify interrupt handlers
(RTSJ introduces interrupt handling in
Java). In Ada 95 and on, the handlers are
protected procedures.

Ada 2005 introduces timing events as a
means to define code to be executed at a
certain time. They are similar to
OneShotTimers, which are a type of asyn-
chronous events in RTSJ [4, 5]. A timing
event can be set to go off either at a cer-
tain time or after a certain interval and can
be canceled. When the event goes off, it
causes a handler to execute. Like interrupt
handlers, timing-event handlers are pro-
tected procedures.

As with interrupt handlers, the system
executes the timing-event handlers; the pro-
grammer does not need to supply a task.
This simplifies things. In earlier Ada ver-
sions, you needed tasks with delay statements
to achieve the effect of a timing event.

Use
A car driver can manipulate the driver’s
side window by means of a lever on the
door. Figure 1 is a fragment of a state
model of the window. It starts in state
Still. By pushing the lever down, the driver
puts the window in state Moving_Down.
Releasing the lever takes the window back
to Still. If the driver holds the lever down
for Time_Amount milliseconds, the win-
dow transitions to the state Auto_Down,
where it continues down even after the
driver releases the lever.

We can define a timing event
Auto_Time to capture this. It occurs when
the window has spent Time_Amount mil-
liseconds in Moving_Down. It causes the
window to enter state Auto_Down.

The handlers for the interrupts
Lever_Down and Release and the timing
event Auto_Time are protected procedures
in Window_Control, which is a state-
machine protected object [8, 9]. It main-
tains the state of the window in the vari-
able Wstate of the enumerated type
State_Type. Wstate’s initial value is Still. The
following are type and instance declara-
tions and part of the specification of
Window_Control:

type State_Type is 
(Still, Moving_Down, Auto_Down, ... .);

Auto_Time : Timing_Event;
Time_Amount : constant Time_Span := ... .
protected Window_Control is
private

procedure Lever_Down;
procedure Release;
procedure Time_Out 

(Event : in out Timing_Event);
Wstate : State_Type := Still; 

end Window_Control;

The interrupt and event handlers need not
be visible from other parts of the software
so they can be declared private. I am leaving
out statements that tie the interrupt handlers
to certain interrupts. The protected body
contains the logic of the procedures [8].

In a state machine-protected object
such as Window_Control, the timing-event
handler fits in particularly well among the
various interrupt handlers. In this exam-
ple, where there is no real computation,
you need no task at all. A pre-Ada 2005
solution would require a task with a delay
statement that calls Time_Out when the
delay expires.

Conclusion
In the mid-80s, soon after Ada 83 first
appeared, programmers switched from
secure Pascal-like languages such as Ada
to insecure C-like languages [13]. Had Ada
been an immediate success, things might
have gone differently. The original tasking
model worked against Ada. That awk-
wardness is now long gone. Tasking in
Ada 2005 is conceptually similar to Java
threading, but much safer. Those respon-
sible for critical software development no
longer have an excuse to gamble on lan-
guages that leave ample room for pro-
grammer mistakes.u
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Notes
1. A safety-critical Java specification is

being proposed that carefully defines a
small subset of Java and RTSJ to meet
stringent reliability, availability, main-
tainability, and safety requirements [6].

2. Ada interfaces can also have null oper-
ations, which are concrete but have no
effect.

3. A synchronized interface can be  imple-
mented by protected types and tasks.
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Similar to the Java Runtime Environ-
ment, Microsoft’s .NET Framework [1,

2] is attractive to software developers as it
provides a large collection of precompiled
classes, including security classes that
allow dynamic loading of modules. Just as
the Java 2 Micro Edition (J2ME) allows
Java programs to be run on embedded and
mobile devices, the .NET Compact
Framework enables .NET applications to
be run on these devices. Unlike Java,
.NET had a goal of interfacing with lega-
cy Windows code. Therefore, Microsoft
provided mechanisms in .NET for easily
combining legacy component object
model (COM) objects and Win32 Stdcall
dynamically linked libraries (DLLs) with
new .NET code.

Microsoft developed a flagship lan-
guage for the .NET Framework: C#. C# is
an object-oriented language with a syntax
and semantics that are very similar to Java.
While C# and Java resolve many of the
really bad problems with C and C++ (in
particular, buffer overflow vulnerabilities,
= versus ==, single character errors, etc.),
they still fail to meet many of the almost
30 year old Department of Defense
(DoD) Steelman requirements [3] for pro-
gramming languages that have always been
met in Ada. For example, while the latest
versions of C# and Java have finally added
generics, both languages still fail to provide
subtypes to properly model scalar values,
and proper enumeration types. C# does
have an enum type, which at first glance
appears to be a proper enumeration type,
but does not provide successor or prede-
cessor functions. Additionally, C# and Java
still require arrays to be indexed with inte-
gers starting at zero (Ada allows the start-
ing index to be specified or allows indexing
an array with an enumeration type, such as
colors).

Ada, on the other hand, has suffered
from a lack of available components
(although Ada 2005 does add a new con-

tainer library). Only a few of the widely
used libraries support Ada. Additionally,
compiler vendors have been slow to pro-
vide compilers for new platforms such as
embedded and mobile devices. As a result,
despite its engineering superiority, Ada is
often not the best tool to get the job done.

The A# project1 seeks to have the best
of both worlds. By providing an open-
source compilation environment for Ada
on the .NET Framework, A# gives soft-
ware developers the opportunity to lever-
age the large amount of reusable .NET
classes while also being able to write code
in a language that strongly supports good
software engineering practices.

Compiling for .NET
One of the key design goals for .NET was
supporting multiple different program-
ming languages. Microsoft provides tech-
nical support to language developers and
has published a list of 27 languages that
compile to .NET (not including the four
distributed with Visual Studio) [4]. To
make it easier for compiler developers to
create compilers for the .NET
Framework, Microsoft provides the .NET
Common Intermediate Language (CIL).
The .NET CIL can be viewed as a high-
level assembly language, which directly
supports object-oriented features such as
inheritance, dispatching, and interfaces.
Since this intermediate language is object-
oriented, compiling an object-oriented
language to the .NET CIL is much simpler
than compiling to Intel assembly language.

The .NET CIL bears a strong resem-
blance to Java bytecode. Therefore,
JGNAT [5] (Gnu Ada Translator [GNAT]
for the Java Virtual Machine) – an open
source Ada compiler that compiled from
Ada to Java bytecode – was used as a start-
ing point for the compiler. We modified
JGNAT to emit CIL instead of Java byte-
code. The resulting compiler is called
MGNAT (GNAT for Microsoft .NET).

Also, we rewrote the Ada standard library
packages to call .NET routines instead of
those from the Java platform. JGNAT is
no longer maintained by Ada Core
Technologies, so it does not contain any
Ada 2005 features. To support Ada 2005,
MGNAT reuses code from the latest
GNAT compiler (with some modifica-
tions) [6]. GNAT is an open-source Ada
2005 compiler distributed under the Free
Software Foundation General Public
License. GNAT runs on many different
platforms, but not .NET.

To make using the compiler easier, we
have modified Ada Graphical Integrated
Development Environment (AdaGIDE)
[7], a freely available development envi-
ronment for Ada, so that the A# compil-
er, MGNAT, can be selected simply by
pushing the target button and then select-
ing the .NET radio button.

Using .NET Classes in Ada
Whenever you mix programming lan-
guages, it is necessary to have a language
binding that enables communication
among components written in different
languages. These bindings may be either
written by hand or automatically generat-
ed. Win32Ada [8] is an example of a
handwritten binding to the Microsoft
Win32 Application Program Interface
(API). The problem with manually writing
such a binding is that it is incredibly
tedious and quickly becomes stale. As the
Microsoft Win32 API developed,
Win32Ada was not kept up to date.

A# provides the MSIL2Ada (Micro-
soft .NET Common Intermediate Lan-
guage to Ada) tool, which automatically
generates bindings. MSIL2Ada is written
in a combination of Ada and C# and uses
the .NET reflection classes to enumerate
all of the classes, methods, and attributes
of a .NET DLL, then generates corre-
sponding Ada specifications.

Consider the following C# class:

Ada 2005 on .NET and Mobile and Embedded Devices

Ada is well known for supporting good software engineering practices and for interfacing cleanly with other languages;
these features have only gotten better with Ada 2005. The A# project is an open-source implementation of Ada
2005 for Microsoft’s .NET Framework. Using A#, programmers can combine Ada code with reusable .NET com-
ponents, including modules written in C#, as well as legacy component object model components and Win32
Dynamically Linked Libraries. This allows leveraging both the software engineering advantages of Ada and the
large amount of reusable libraries written for .NET. Additionally, A# targets portable digital assistants and other
mobile and embedded devices. 

Dr. Martin C. Carlisle
U.S. Air Force Academy
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namespace crosstalk {
public class Class1:Superclass, 
MyInterface {

public color my_color;
private string s;
public Class1(string x) {…}
public void package() {…}
public static color get_color() {…}
private int get_value() {…}

}
}

MSIL2Ada parses the compiled DLL con-
taining this class and generates the follow-
ing Ada specification (corresponding to
only public attributes and methods):

with crosstalk.Superclass;
with crosstalk.MyInterface;
with crosstalk.color;
limited with MSSyst.String;
package crosstalk.Class1 is

type Typ;
type Ref is access all Typ’Class;
type Typ is new crosstalk.Superclass.Typ
and crosstalk.MyInterface.Typ
with record

my_color : crosstalk.color.Valuetype;
pragma Import(MSIL,my_color,  
”my_color”);

end record;
function new_Class1(This : Ref := null;

x : access MSSyst.String.Typ) 
return Ref;

function get_color returncrosstalk. 
color.Valuetype;
procedure package_k(This : access Typ);

private
pragma Convention(MSIL,Typ);
pragma MSIL_Constructor(new_Class1);
pragma Import(MSIL,get_color,”get_color”);
pragma Import(MSIL,package_k,
”package”);

end crosstalk.Class1;
pragma Import(MSIL,crosstalk.Class1,”.ver
1:0:2161:15913”,“[crosstalk]crosstalk.Class1”);

In the Ada code above, the compiler
directive pragma Import specifies that an
item is being imported from a different
programming language. Several new Ada
2005 features are used in this binding,
making it easier to read than similar bind-
ings written in Ada 95. First, Ada 2005
adds interfaces, which are styled after
those in Java and C#. In the definition of
Class1, the and shows how to specify that
a tagged type implements an interface.
Oddly, in Ada 2005, only child classes are
allowed to implement interfaces. This
poses no problems in mapping the C#
types as all types in C# are derived from
System.Object (which does not implement
any interfaces).

Second, the new limited with clause in
combination with new anonymous access
types makes it easy to map mutually
dependent C# classes. A limited with clause
is added for each dependent class (as is
seen for MSSyst.String).

Reserved words in C# and Ada differ,
and C# is case-sensitive while Ada is not, so
the pragma Import is used to map C# names
to Ada names. Note that since package is a
keyword in Ada, _k is added to its Ada iden-
tifier. The namespace System from C# is
renamed to MSSyst for similar reasons.

A# was the first Ada compiler to
introduce the object.method syntax,
which has now become part of the Ada
2005 standard. This means that program-
mers using both C# and A# can use the
same object-oriented syntax for method
calls in both languages. In Ada 95, a call to
the package_k method would have
appeared as:

crosstalk.Class1.package_k(This=>
Class1_ Ptr);

In A# and Ada 2005, this can now be
written as:

Class1_Ptr.package_k;

This is not only shorter, but simpler, as
the programmer does not need to worry
about what package a class was declared in
to call a method on it. This is particularly
helpful for non-dispatching methods (those
declared with ‘Class), as they may be in
packages where superclasses were declared.

On the Java Virtual Machine, there
were only base types (such as integer and
float) and class references. The Microsoft
.NET platform allows for the creation of
types that stored on the stack are passed
by value (hence the name Valuetype)
instead of by heap reference. To resolve
this, we have added the reserved word
Valuetype. The get_color method returns
something of type crosstalk.color.Value-type.
If a type is so named, then the compiler
will generate code for it according to the
.NET calling conventions for Valuetypes.
Since there are no pointers for these types,
a full with is needed for the crosstalk.color
package instead of the limited with used
for other dependencies.

The C# enum is another example of a
Valuetype. Although, as previously men-
tioned, it differs from an Ada enumeration
type. A# currently maps it to an Ada enu-
meration. However, since C# enum types
do not support determining a successor or
predecessor, these mapped types cannot
use Ada enumeration attributes (such as
‘Pos or ‘Succ). Unlike Ada enumeration

types, .NET enumerations can have multi-
ple names corresponding to the same
value. In these cases, a named constant is
declared for each additional name. In cer-
tain cases, enum values can be combined
to create values that have no name (e.g., in
the FontStyle enumeration, Bold and Italic
are listed – they can be added together to
create a Bold Italic style, although this is
not listed in the enumeration). When the
type allows this, we provide a function (+)
for performing such combinations. The
C# enum differs so significantly from an
Ada enumeration that it would be more
accurately mapped to a named integer
type (e.g. type FontStyle is new Integer). This
more precise mapping may be accom-
plished in a later version.

Another key difference between C#
and Ada data types is the use of strings. In
C#, strings are stored in 16-bit unicode,
while the Ada basic string is eight-bit
International Standardization for Organ-
ization (ISO) Latin-1. Since it is expected
that strings will be commonly passed
between the languages, A# provides a
unary (+) operator to perform the follow-
ing conversion.

Csharp_String : MSSyst.String.Ref := + 
”hello world”;

When calling a C# method that takes a
string as a parameter, the compiler will
automatically insert the conversion:

C1 : crosstalk.Class1.Ref :=new_Class1 
(x => “hello world”);

Extending a .NET class in Ada
A peculiarity that is exposed by the map-
ping to Ada is the appearance of the this
parameter in the constructor for Class1. All
C# constructors are required, as their first
act, to call a parent constructor. Generally,
the no-argument constructor of the parent
is used; however, this can be changed in C#
by using base, as the following:

public Class1(string x) : base(x)

This indicates that parameter x should be
passed to the superclass constructor that
takes a string as a parameter. When
extending a .NET class in Ada, the call to
the constructor method is done explicitly
in the variable declaration:

function New_MenuItem(This : Ref := null) 
return Ref is

Super : MenuItem.Ref :=
MenuItem.New_MenuItem  

(MenuItem.Ref(This));
begin

Ada 2005 on .NET and Mobile and Embedded Devices
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return This;
end New_MenuItem;

This code seems a bit peculiar, as Super
appears to be an unused local variable, and
the function looks like it will return null;
however, the compiler generates the cor-
rect code that allocates a new object and
calls the parent constructor. The Ada child
class also needs to be marked with the
convention MSIL (Microsoft .NET CIL)
and have its constructor marked as an
MSIL constructor (as shown in the pack-
age crosstalk.Class1).

Calling A# Code From C#
Although a free graphical user interface
(GUI) builder tool, Rapid [9], can be used
to develop user interfaces for the .NET
framework in Ada, Visual Studio [10] pro-
vides a much more extensive GUI builder.
Consequently, it can be advantageous to
use Visual Studio to develop the user
interface and then write the rest of the
code in Ada.

In this case, you create a DLL from the
Ada code instead of an executable. A#
comes with mgnatmake, a tool which
automatically detects dependencies be-
tween Ada source files, performs the re-
quired compilations, and combines the
results. By default, mgnatmake generates
executables, but it can be instructed to
generate DLLs instead:

mgnatmake msil2ada -o msil2ada_output.  
dll- z -largs /DLL

These arguments tell mgnatmake to com-
bine all of the dependencies of the project
MSIL2Ada into an output file named
msil2ada_output.dll (-o), with no main
program (-z) and to create it as a DLL
instead of an executable (-largs/DLL).

In Visual Studio, you can simply add a
reference to this DLL, and the Intellisense
will automatically suggest the Ada meth-
ods (Visual Studio automatically creates
the appropriate language binding).
Because .NET does not allow a name-
space and a class to have the same name,
it was necessary to add _pkg to the end of
the final Ada package name, so
P1.P2.P3.Put would be referenced as
p1.p2.p3_pkg.put. Also, it is necessary to
call the initialization routine generated by
the binder explicitly from the C# code as:

ada_msil2ada_output_pkg.adainit();

The binder output has an additional ada_
prefix on the package name (which has
been given the _pkg suffix as previously
described).

Uses of A#, Embedded and
Mobile Devices, and More
Interoperability
The most widely used program imple-
mented using A# is RAPTOR [11] (Rapid
Algorithmic Prototyping Tool for
Ordered Reasoning). RAPTOR is an
open-source visual programming environ-
ment designed for use in an introductory
computer science class. RAPTOR’s visual
programming model is based on flow-
charting. RAPTOR is being used in an
increasing number of universities across
the United States and Canada with
inquiries from as far away as Japan.

RAPTOR is an interesting use of the
A# technology, as it incorporates C# and
A# code, as well as a legacy C++ graphics
library. Figure 1 shows the interrelation
between the various software components
in RAPTOR.

The C#, C++, and Ada code are writ-

ten by hand; the interoperability DLL is
generated automatically by Visual Studio
when a reference to the COM object is
added to the project.

A# is also being used on some defense
projects, in particular to port Ada applica-
tions to embedded and mobile devices
using the .NET Compact Framework. It is
a trivial matter to target an embedded or
mobile device using A#. Simply adding
the-compact flag to both MSIL2Ada and
MGNAT instructs these tools to generate
code suitable for use with the .NET
Compact Framework. Two of the plat-
forms available with the compact frame-
work are the Pocket PC and the
Smartphone 2003.

A final, recently added piece of inter-
operability is the ability to interface with
legacy Win32 DLLs. In C#, you would
add the following code to import from a
Win32 DLL:

[DllImport(“adagraph2001.dll”)]
public static extern int 

CreateGraphWindow(int size);

In A#, you instead do the following:

function Open_Graph_Window(Size : in 
Integer)
return Integer;

pragma Export(Stdcall,Open_Graph_Window,
“[adagraph2001.dll]CreateGraph 
Window”);

This also provides a function body (which
will be ignored). While it is irregular to use
a pragma Export to import from another
file, this is done because it is necessary to
generate code in addition to merely a call,
and it was simpler to generate a body on a
function marked for export.

Conclusions and Future Work
A# has demonstrated the viability and
usefulness of combining Ada with other
.NET languages, as well as providing
interfacing to legacy Win32 and COM
libraries. This allows developers to gain
the advantages of Ada’s strong typing
while also leveraging the vast number of
libraries available with .NET and the GUI
builder from Visual Studio. Furthermore,
A# provides an easy mechanism for get-
ting Ada code running on embedded and
mobile devices via the .NET compact
framework (e.g. Windows CE, Pocket PC,
Smartphone 2003).

There are significant areas for future
work. First, we are currently working to
fully integrate Ada into Visual Studio 2005.
Visual Studio 2005 now allows extensions
to be written in .NET languages (Visual

C++ COM

(.dll)DLL

C# GUI

(.exe)

Ada Code

(.dll)

C++ COMC++ COMC++ COM

(.dll)(.dll)(.dll)DLDLDLLLL

C# GUIC# GUIC# GUI

(.exe)(.exe)(.exe)

Ada CodeAda CodeAda Code

(.dll)(.dll)(.dll)

Figure 1: Interoperability Demonstrated in RAPTOR



Ada 2005 on .NET and Mobile and Embedded Devices

August 2006 www.stsc.hill.af.mil 19

Studio 2003 required the extension to be
written using C++ COM objects), so the
integration code is also being written in a
combination of A# and C#.

Second, version 2 of the .NET frame-
work adds generics. Using the generics
built into the framework to implement
Ada generics might reduce code size and
make the genericity of Ada constructs vis-
ible to other .NET languages. This will be
a non-trivial effort as the generic model in
.NET is not as fully featured as that in Ada
(it allows only types as generic parame-
ters). Also, MSIL2Ada and MGNAT need
to be updated to allow Ada programmers
to use generic classes written in C#.

Finally, while A# has been maintained as
an academic project (even though it is in use
by defense contractors), it would be prefer-
able to perform technology transfer to the
private sector, which has greater resources
to develop and maintain this product.u
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Dear CrossTalk Editor,
Kevin Stamey’s sponsor note, “Why Do Projects Fail?” in
CrossTalk’s June 2006 issue was encouraging. Software peo-
ple are finally starting to realize that systems engineering is nec-
essary to their success. What Stamey observes is mostly correct.
But he does omit several items, some of which were touched on
by the articles in the June issue.

He omits Configuration Management (CM). Without it you
are doomed to fail. Who hasn’t been burned by some cowboy
coder who decided to make an improvement without telling any-
one, let alone obtaining authorization, delaying testing and caus-
ing previously working code modules to fail unexpectedly. Even
finding the latest version of a document challenges most orga-
nizations.

But CM is really a subset of communication and coordina-
tion. When I worked in acquisition, I included a glossary of
every term used so there would be no mix-ups, as in Alan Jost’s
article. Anyone who does not define their terminology is ask-
ing for protests, screw-ups, and lawsuits. Why including a glos-
sary isn’t standard practice is a mystery. It should continue into
the development work by instantiating a project glossary that
goes to the level of detail of the units used in calculations.

As Capers Jones alludes to in his article, lack of adequate
resources is a root cause of failure. Lack of ethics and moral

courage on the part of management and engineering exacer-
bates the problem, as does outside influences such as political
pressure and executives who want to make the numbers to get
their bonus; congress may cancel funding if progress is not
shown. With such a situation, misleading status reports are sure
to result, making the situation even more critical later on.

Tim Perkins has the best high-level diagram that I have seen.
I infer that it puts too much faith in CMMI-type answers, but it
captures the paths to the real root causes. However, Item 150 is
a constraint that must be considered in the Systems
Architecture; it is not a valid cause of project failure.

Between large, complex, unprecedented systems and small
routine, incremental improvements to COTS, there is a wide
range of processes that should be used. Processes must be tai-
lored to fit the situation. This requires that competent people
be used. Ones who understand, not merely check off boxes on
some list. They must truly understand the essence of what they
are doing and not just chant the black magic incantations they
were promulgated by some professor.

William Adams, PE, Ph.D.
<williamadams@ieee.org>

LETTER TO THE EDITOR



Ada is now entering its third standard
incarnation, currently known as Ada

2005. Its earlier incarnations were Ada
83, which was designed in the late 1970s
and early 1980s by a team led by Jean
Ichbiah, and Ada 95, which was designed
in the early 1990s by a team led by this
author. In contrast to the earlier incarna-
tions, Ada 2005 was designed by a large-
ly volunteer committee, led by Pascal
Leroy. The only member of the commit-
tee actually on the payroll was Randy
Brukardt, who was supported by
AdaEurope and the Ada Resource
Association in his official role as editor
of the new standard.

The lack of a full-time design team to
drive and shape the design process creat-
ed misgivings among some members of
the committee who felt it could impede
the process. The design-by-committee
process has a well-deserved reputation
for producing awkward and unpleasant
collections of disjointed compromises.
The question was whether the Ada 2005
process could sidestep these pitfalls.

With a full-time design team and a
clear team leader, the Ada 95 revision
benefited from a cohesive vision that
kept the design from becoming a scat-
tered combination of ideas. With a vol-
unteer committee, there was a danger
that the need to create consensus without
the hierarchy present in a design team
would result in inconsistencies, that each
committee member would be mollified
by being given their own pet feature, and
the language would descend into a balka-
nized conglomerate of sublanguages.

Ada 2005 seems to have escaped the
notorious design-by-committee prob-
lems. The proposed changes seem to
have brought the language into a state
where it is, if anything, more integrated
and more consistent. How was this
accomplished? In retrospect, the key fac-
tor in achieving this desired goal has

been a strong, shared, language-design
philosophy driving design decisions. This
kind of shared philosophy might not
have been possible in earlier Ada stan-
dardization activities, as the language and
the community of users were still rela-
tively new. For the Ada 2005 process, we
had a set of committee members with
many years of experience both as users
and implementors of Ada and a shared
vision of what makes Ada powerful and

productive, namely its unique combina-
tion of safety, flexibility, efficiency, and
its real-time support. Our goal in Ada
2005 was to preserve and enhance these
strengths while reducing any impedi-
ments to productive use.

The two anchors in the shared vision
were safety and efficiency, with safety
given more weight – though never
absolute precedence – when there was a
conflict. Ada’s focus on safety is in
strong contrast with certain other lan-
guages, where the attitude might be
expressed as give programmers very sharp
tools and then get out of their way, although
this latter attitude sounds great for real
programmers. In fact, even the best pro-
grammers make mistakes. Part of the

Ada philosophy is that by appropriate
human engineering, you can produce a language
that is in the end more productive. The design
of the language allows the compiler and
the run-time to catch typical programmer
errors before they become tedious
debugging problems.

To illustrate how this shared philoso-
phy interacted with the Ada 2005 design
process, it is useful to study the evolution
of a particular Ada 2005 feature as it
moved from a perceived language prob-
lem – through the debates over the multi-
ple ways to solve it and finally to the ulti-
mate consensus around one particular
solution.

Solving the Mutual
Dependence Problem
One of the first challenges for the Ada
2005 revision was allowing for mutual
dependence among types that were not all
declared in the same package. As an exam-
ple, one might have a type representing
employees and another representing
departments where a department record
would include a pointer to the employee
who is the manager, and the employee
record would include a pointer to their
department. In Ada 83 and Ada 95, by
using an incomplete type declaration, a
software engineer was able to define such
mutually dependent types, but only if they
were all in the same package. This limita-
tion led to large, unwieldy packages, partic-
ularly in the context of object-oriented
programming.

Although this mutual dependence
problem was one of the first identified, it
was one of the last problems solved during
the revision process. The problem proved
extraordinarily difficult to solve in a way
that satisfied the various criteria inherent in
our shared design philosophy. In the end,
seven different approaches were consid-
ered, six of which were considered viable:

The Ada 2005 Language Design Process 
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1. A new kind of incomplete type called
a separate incomplete type whose comple-
tion is given in a separate library unit,
rather than in the same library unit
that contains the incomplete type
declaration.

2. A variant of the separate incomplete type
called a type stub where the type stub
identifies the particular library unit
where its completion will be found.

3. A new kind of incomplete type decla-
ration that specifies that the comple-
tion will occur in a particular child or
nested package of the package contain-
ing the incomplete type declaration.

4. A new kind of with clause called a with
type clause to specify that a particular
type will exist in a separate package,
without requiring the package itself
to be compiled prior to the referenc-
ing unit.

5. A new kind of compilation unit
called a package abstract to contain
incomplete type declarations that are
to be usable (via a with abstract clause)
as part of a mutual dependence that
crosses package boundaries.

6. A new kind of with clause called a lim-
ited with clause that gives visibility on
an implicitly created limited view of a
second package, where the limited
view contains incomplete versions of
the (non-incomplete) types declared
in the second package; limited with
clauses are allowed to create circular
dependencies between packages.
Although each of these proposals

had its particular merits, only one ulti-
mately emerged as the best when judged
against all of the design criteria. One of
the most important criteria was that the
feature should preserve the ability to
identify all of the inter-compilation unit
dependencies by only looking at the
name and the context clause of a compila-
tion unit (the context clause is the set of
with and use clauses that immediately pre-
cede a compilation unit). The separate type
and type stub proposals lacked this.
Alternative three, allowing a type to be
completed in a child, also lacked an indi-
cation in the context clause that a depen-
dence on the child existed, though it was
given some credit for keeping the unan-
nounced dependence to a unit in the
same package hierarchy.

After eliminating the proposals that
introduced unannounced dependencies,
we were left with the with type, package
abstract, and limited with proposals. The
with type proposal was abandoned because
it did not really solve the whole problem
since it did not provide any visibility on
an access type, and a mutual dependence

between types necessarily involves an
access type. Furthermore, it created a
namespace with holes in it, where visibil-
ity was granted by a with type P.T, on a
single declaration within package P, with-
out providing visibility on the rest of the
visible part of P. This was unprecedent-
ed and was inconsistent with a choice
made in Ada 95 when designing with
clauses that mention child units where
the entire parent package visible part was
included rather than just the named
child. An important criteria in our design
philosophy has been to try to make con-
sistent choices so that the programmer’s
intuition about how the language works
is reinforced as they learn more of the
language rather than being forced to
learn new rules in each corner of the lan-
guage.

The package abstract proposal was
abandoned primarily based on the crite-
ria of simplicity of use and implementa-
tion. Adding a new kind of compilation
unit, a package abstract, would be a sig-
nificant disruption to all existing Ada
tools. Forcing the user to decide which
types of the package to include as
incomplete types in the package abstract
felt somewhat arbitrary, and the decision
might change repeatedly as the system
grew. Although this proposal was aban-
doned, its heritage can be seen in the
simpler-to-use limited with proposal.
Here, the implementation creates the
equivalent of the package abstract
implicitly, creating incomplete type defi-
nitions for all of the types in the original
package, while relieving the user of hav-
ing to perform the potentially error-
prone copy-and-paste process manually.
Furthermore, implementability concerns
were lower because many non-compiler
tools could largely ignore these implicitly
created limited views.

In the end, there was agreement that
the limited with proposal was clearly supe-
rior to the other five alternatives. But the
process of reaching this point was long
and arduous, with many person-months
of effort invested in several of the other
proposals, including relatively detailed
analyses of implementation effort, realis-
tic examples of use, and vigorous
debates of the pros and cons. The fact
that a consensus was eventually reached
depended in a large part on the shared
fundamental design philosophy, both at
the high level, such as simplifying the
work for the user, reducing the need for
arbitrary decisions, and remaining con-
sistent with other analogous choices to
the lower level such as ensuring that
inter-unit dependencies are fully cap-

tured in the name and context clause of
a compilation unit.

Conclusion
Although the mutual dependence problem
was probably the most difficult design
problem we faced, there were many other
problems where a number of alternative
approaches were proposed as possible
solutions. In each case, we debated the
alternatives vigorously, but ultimately a
consensus emerged, shaped by the criteria
provided by our strong, shared design phi-
losophy. Safety, clarity, consistency, ease of
use, and efficiency of implementation
provided strong criteria that allowed us to
select among the competing proposals
with a feeling of satisfaction in the end
that we had chosen a clearly superior
approach rather than just settling arbitrar-
ily for one of many equivalent alternatives.

Although it is conventional wisdom
that a design-by-committee generally pro-
duces a set of compromises that leave
everyone somewhat unhappy, the Ada
2005 design process left its design com-
mittee with an unusual level of satisfac-
tion and sense of accomplishment. It
seems clear that this outcome was largely
a result of the long history behind the
committee. This history enabled us to
debate vigorously, but we all feel very
good about the final result. We had been
able to tie our decisions to criteria that we
all shared and which we agreed were the
key to the unique safety and productivity
of the Ada language.u
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Software Engineering Technology

The Ada 2005 standard will help many users. But the reality of working in a frozen, legacy development environment needs
to be addressed. Development in a mixed version (Ada 83 and Ada 95) and mixed language (C and C++) environment
involves dealing with many issues. This article addresses the issues that we encountered when developing applications for the
Air Force Mission Planning System. These issues fit into three main categories: dealing with Ada strings, using inter-lan-
guage interfacing, and using different Ada compilers (83 and 95) but maintaining one code base. This article discusses sev-
eral of the technical issues involved in interfacing Ada, C, and C++ from both a syntactical and run-time perspective.

The Air Force uses three different mis-
sion planning systems (Mission

Planning System [MPS], Portable Flight
Planning Software [PFPS] and Joint
Mission Planning System [JMPS]) to plan
routes and missions for training and actu-
al war fighting. The Overlay Import/
Export Tool (OIET) and MPS Common
Route Definition Import/Export Tool
(MCIET) were developed to import to
the MPS data from PFPS and JMPS, or
export data from the MPS for use on
PFPS and JMPS. OIET imports/exports
machine and user generated graphics
needed for flight planning. MCIET does
the same for route information. This arti-
cle addresses some of the obstacles faced
during the development and sustainment
of these software programs in mixed
development environments.

The MPS was developed by a govern-
ment contractor in the early 1990s.
Because mission planning is such a criti-
cal task, stability is very important, so the
development and run-time systems were
frozen at that time, with the exception of
some critical upgrades, like the Y2K
patch. However, legacy hardware and
software are not supported forever. A
government contract with Sun provided
for the continued availability of the old

versions of the operating system and
compilers. But new hardware was not
easily compatible with the older operat-
ing system, and the older hardware was
becoming increasingly difficult to main-
tain. Therefore, a decision was made in
2004 to upgrade to the current hardware,
operating systems, and compilers.

New hardware and software allows a
great leap forward for both the develop-
ers and users. But the criticality of mis-
sion planning prevents the users from
moving until their entire planning envi-
ronment is moved. Each aircraft system
(i.e., B-2, B-52H, F-117) has a different
mission planning environment (MPE)
that consists of the core software (oper-
ating system and applications) along with
additional installable software modules
(ISMs) and other software. This means
that the OIET and MCIET need to be
maintained for both the old system and
the new system until all aircraft MPEs
have been upgraded to the new system.

String Issues
Because many of Ada’s features were
originally designed to address
Department of Defense (DoD) needs,
Ada handles several important features
(such as strings, pointers, and memory

allocation/deallocation) differently from
its programming peers – languages such
as C, C++, and Java. This article covers
several important topics that merit sepa-
rate discussion, especially in the context
of not only multiple-language program-
ming, but also in the context of a mixed-
mode language environment. One of the
most important issues involves the way
Ada treats strings as opposed to other
languages.

Ada Strings
The initial MPS development environ-
ment had been frozen with an Ada 83
compiler. Strings in Ada 83 (as in most
computer languages) are arrays of char-
acters. Ada 83 was designed with a great
consistency about how arrays are han-
dled: arrays must be defined with a par-
ticular size before they can be used; when
assigning one array to another, they must
be the same length and contain the same
type of data. This works fine for an array
of generic data but not nearly as well for
strings where variable-length is normal.

When strings are passed around, vari-
able lengths are often used. Receiving a
variable-length array (including strings) as
a parameter to a subprogram (procedure
or function) is relatively easy to do.
However, returning a variable-length
array (or string) as the return value of a
function or an out parameter of a proce-
dure is not possible using standard Ada
83 language constructs. Some sort of
substitute (or trickery) must be used to
accomplish the desired result. This is why
the Ada 95 standard added the unbound-
ed-string type and the allocate-and-assign
construct (pointer : = new string’(trim_ spaces
(some_ string));), so that standard solutions
will be available.

But since we needed to pass variable-
length strings in Ada 83, we developed
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package VString is

type VString is limited private;

subtype C_String_Ptr is CString_Interfaces.C_String_Ptr;

  …

private

type String_Access is access String;

type VString is

record

cur_length : Natural := 0;

str_access : String_Access := Null;

end record;

end;

--Top of file (For Ada 83 compiler)

With Current_Exception;

…

-- Exception block

exception

when others =>

    error_message(“Exception “ &

        Current_Exception.Exception_Name &

        “ propagated out of Export_Overlay”);

end Export_Overlay;

--Top of file (For Ada 95 compiler)

With Ada.Exceptions;

…

-- Exception block

exception

when Event: others =>

    error_message(“Exception “ &

        Ada.Exceptions.Exception_Name(Event) &

        “ propagated out of Export_Overlay”);

end Export_Overlay;

-- Significant portion of “exceptions.a”

#ifdef C2_2d

With Current_Exception;

#define EXCEPTION_EVENT(x)  x

#define EXCEPTION_NAME  Current_Exception.Exception_Name

#else

#ifdef LCU

With Ada.Exceptions;

#define EXCEPTION_EVENT(x)  Event: x

#define EXCEPTION_NAME  Ada.Exceptions.Exception_Name(Event)

#else

#error “Must define Core version number”

#endif

#endif

Figure 1: Core of VString Package
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the VString (variable string) package. A
VString variable is basically a string-
access (string pointer) with the current-
length-used, but the VString package
hides the implementation details (see
Figure 1). This package also provides an
interface (supporting procedures and
functions) to do what is needed to
VString variables. The VString type could
have been implemented as a private type,
but because of the string access type
inside, it is not recommended.

For instance, if VString is a private
type and two variables (Aye and Bee)
contain the VString values of Alphabet
and Spelling Bee respectively assigning
Aye to Bee (or Bee := Aye;) would copy
the values exactly (i.e, Bee.cur_length :=
Aye.cur _length; and Bee.str_access :=
Aye.str_access;) The access to the Spelling
Bee string is now lost. This is called a
memory leak1. The string reference by
both Aye and Bee is also referenced (ref-
erenced two or more times) so that if
Aye is set to Numerics (using VString
functions), Bee also holds the same
string. This is not usually desirable.

Also, if unchecked_deallocation is instan-
tiated to free (return to available memo-
ry) the string-access memory, and both
Aye and Bee are freed, the same memory
will be freed twice, creating a potentially
disastrous problem in the program.

This is why VString is declared as a
limited private type, so that assignment is
not allowed between two variables of the
same type. With Ada95, these problems
do not exist because limited-private types
may have the assignment operator over-
loaded and tagged-types have the equiva-
lence of destructors (through Ada.
Finalize).

Support subprograms are used to
copy Ada strings or C strings to VStrings.
VStrings may also be copied to Ada
strings, with automatic truncation or
extension (space filling) to the size of the
destination string. A VString is also kept
null-terminated2 so that it can be passed
to a C or C++ function. As needed, other
support subprograms to compare, paste,
slice, search, replace, output, and debug,
have been added to the package. This
package has proven useful and is used
extensively in OIET and MCIET.

There are some good reasons for allo-
cating more character space (in the string)
than will be immediately needed. Dynamic
memory allocation algorithms will always
allocate memory in multiples of a minimum
allocation unit, so taking advantage of this
does not consume more actual memory
than usual. Also, depending on the pro-
gram and string, a string may change size

several times over its lifetime and allocat-
ing a little more memory is likely to delay
the need for reallocation of memory as
the string grows. If the length of the
string decreases, it may only be a tempo-
rary decrease, so holding on to the memo-
ry is not likely to adversely affect perfor-
mance. When Ada calls for the actual
string, the slice of the allocated string that
is in use is returned.

Because a limited private type cannot
be automatically copied (in Ada 83), we
had to find another way of including
variable-length strings in nodes of a
generic linked list package. Instead, we
used string access types directly in the
nodes of the list. Another option would
have been to provide a copy procedure as
one of the parameters to the generic
linked list package.

This VString package worked for us

because we had to use Ada 83. But if you
have the option, use the improved string
handling capabilities added in Ada 95 or
Ada 2005.

More on C Strings 
Ada83 has no standard way to pass or
receive C strings, but the compiler that
we used provided a proprietary method
of doing this. The Ada95 standard has
defined the Interfaces.C.Strings package as
this interface. Passing and receiving C
strings is done extensively throughout the
Ada portion of our code; using the
respective compiler-provided interfaces
would split our code into pairs of files
that would be mostly identical, thereby
increasing maintenance costs. Also, using
a file preprocessor would have been
unwieldy in this case.

The least disruptive method to pass
and receive strings was to create two dif-
ferent packages, one for each Ada (83
and 95) compiler. Each package would
reside in a different file but internally call
itself CString_Interfaces. Each package
would present the same interface to users

of the package and become an interme-
diary to the actual functionality provided
by each compiler. Relatively small
changes were then made to the code that
needed to interface with C strings
(including the VString package discussed
above). One of these changes was to use
C_String_Ptr wherever a pointer to
(address of) a C String was needed. Any
user of this package can use C_String_Ptr
without knowing (or caring) what the
actual type is. As needed, other subpro-
grams to perform needed functions, like
copying to and from C Strings, are pro-
vided in the CString_Interfaces package.
The specification and body for each of
the two implementations resides in the
same directory and a make3 file is used to
compile the appropriate version of the
package.

Interlanguage Interfacing
Since some of OIET and MCIET are
written in C, strings are also often passed
between Ada and C, but Ada strings are
not simple. It is easier to pass C Strings
using the C-String interface package pro-
vided with your compiler, as discussed in
the previous section. When passing a
string to a C function, unless special con-
siderations have been made (like passing
in the length also), each string will need
to be null-terminated. To facilitate this,
the VString package places an ASCII.null
after the used portion of each VString.
When the cptr function is called, it returns
a C_String_Ptr ready to be passed into a C
function. Like the C_String_Ptr used, it is
good practice to declare a new type for
each pointer type that is passed around so
that a user does not accidentally pass a
pointer of one data type to a function
expecting another.

Also, do not assume that an integer in
Ada will correspond to an int in C.
Depending on the compiler and compil-
er options, it may or may not. But find-
ing out which types of addresses, inte-
gers, and floating-point values corre-
spond between Ada and C is a simple
process of consulting the respective
compiler manuals.

Another key to interfacing with
another language is understanding how
each language will pass subprogram para-
meters. FORTRAN always passes para-
meters by reference. That is, if 1 is passed
to a subprogram, the value of 1 is placed
in memory and the address of the mem-
ory location is passed to the receiving
subprogram (in a processor register or on
the processor stack). C passes parameters
by value or by address. Passing by value
means that if a value of 1 is passed as a

“Another key to
interfacing with

another language is
understanding how
each language will
pass subprogram

parameters.”
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parameter; a 1 is passed to the receiving
subprogram. Passing by address means
that the same thing happens as passing by
reference. C++ may pass by value, by refer-
ence, or by address.

The difference between by address and
by reference is determined by how the
receiving program treats the address
received. If the parameter is received by
reference, then the receiving subprogram
knows to fetch the value from the
address specified. That is, the address of
the variable is implicitly dereferenced. If
the subprogram receives by address, it
must specify that it is fetching the value
from the address. That is, the address of
the variable is explicitly dereferenced. This
applies to Ada when an access type is
passed into a subprogram and .all is used
to get the value stored at that access
location.

It is important to understand the dif-
ferent ways that parameters may be
passed to discuss how to interface
between languages. In both of the Ada
compilers used for this project (Ada 83
and Ada 95), a parameter specified as in is
passed by value, and a parameter specified
as out or in out is passed and received by
reference. Simple types (integer, floating-
point numbers, addresses, etc.) are
returned from Ada and C functions by
value. Ada may return complex types
(strings, records, arrays, etc.), but we did
not experiment with returning such types
between languages.

Concerning subprogram parameters,
Ada is more restrictive than C. Ada pro-
cedures allow parameters to be in, out, or
in out, but allow no value to be returned.
Ada functions have return values, but
parameters can only be in, which is also
the default if not specified. It is best to
use the more restrictive Ada rules. In C or
C++, the equivalent to an Ada procedure
would be a void function. If a C function
needs to have both out parameters and a
return value (such as a system function),
then a wrapper function can be used.

For instance, to find the status of a
file, the system function int stat(const char
*path, struct stat *buf); is used. Success or
failure status is returned from the func-
tion as an integer value, and the status of
the file itself is returned in the buffer. A
C wrapper function could look like this:
void wrap_stat(int* result, const char *path,
struct stat *buf) { *result = stat(path, buf); }.
The Ada declaration to call this C func-
tion would look like procedure
wrap_stat(result : out integer ; path: in
C_String_Ptr; buf : out stat_record_type);
with the supporting declarations of the
stat_record and C function.

Ada and C++ Issues
One problem between Ada and C++
surfaces during runtime. Both Ada and
C++ have variables, records, and objects
that must be initialized when the pro-
gram starts to run, before the first sub-
program (main in the case of C++) is

entered. In order to do so, each language
wants to control program start-up, but
only one can. An alternative considered
was to let one of the languages start the
program then call the other language’s
initializer (subprogram to initialize data).
This varies from compiler to compiler
and even operating system to operating
system. These routines were not found
in the manuals for our compilers, so
another plan had to be devised.

The program was broken into two
pieces: one program initialized by Ada
and one program initialized by C++.
The Ada portion runs the Graphical
User Interface (GUI) and calls the C++
portion much like a subroutine would be
called. This is implemented by using the
Unix system functions fork (to start
another child process), execl (to execute a
new program inside of a process), and
wait (to wait for a child process to com-
plete). The exit status of the subpro-
gram is used where a return value would
normally be used, but the type may only
be an unsigned integer in the range of
zero to 255. To use this value returned
from the child process, symbolic names
(constants) are defined for each of the
return values used in both Ada and C++
to indicate what type of success or fail-
ure has occurred. For instance, the value
of zero is defined as STATUS_SUC-
CESS or fully successful completion.
For longer messages meant for the user
to view (error, warning, or information-
al messages), the name of a log file is
passed as a parameter to the new pro-
gram. If there is anything in the log file
to show the user, an appropriate value is
returned. In the case of abnormal termi-
nation of the child process, a system
error code is automatically returned by
wait.

Some code needed for results in the
GUI had already been written in C++,
and by its nature could not easily be seg-
mented to run as another program.
Through experience it was found that
the C++ Standard Template Library
(STL) relied on the initializers being
called, so they could not reliably be used
in any of these routines. However, while
resolving this issue, it was also discov-
ered that even though the C++ initializ-
ers are not run, global and static memory
for simple types (ints, chars, pointers,
arrays, structs, etc.) was initialized as
expected, but the memory occupied by
global and static objects (instantiations
of classes) is always cleared, initialized to
zeroes. There was a need to program
defensively, but the clearing of the mem-
ory could be used advantageously. If a
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package VString is

type VString is limited private;

subtype C_String_Ptr is CString_Interfaces.C_String_Ptr;

  …

private

type String_Access is access String;

type VString is

record

cur_length : Natural := 0;

str_access : String_Access := Null;

end record;

end;

--Top of file (For Ada 83 compiler)

With Current_Exception;

…

-- Exception block

exception

when others =>

    error_message(“Exception “ &

        Current_Exception.Exception_Name &

        “ propagated out of Export_Overlay”);

end Export_Overlay;

--Top of file (For Ada 95 compiler)

With Ada.Exceptions;

…

-- Exception block

exception

when Event: others =>

    error_message(“Exception “ &

        Ada.Exceptions.Exception_Name(Event) &

        “ propagated out of Export_Overlay”);

end Export_Overlay;

-- Significant portion of “exceptions.a”

#ifdef C2_2d

With Current_Exception;

#define EXCEPTION_EVENT(x)  x

#define EXCEPTION_NAME  Current_Exception.Exception_Name

#else

#ifdef LCU

With Ada.Exceptions;

#define EXCEPTION_EVENT(x)  Event: x

#define EXCEPTION_NAME  Ada.Exceptions.Exception_Name(Event)

#else

#error “Must define Core version number”

#endif

#endif

Figure 3: Exception Handling Example for Ada 95

package VString is

type VString is limited private;

subtype C_String_Ptr is CString_Interfaces.C_String_Ptr;

  …

private

type String_Access is access String;

type VString is

record

cur_length : Natural := 0;

str_access : String_Access := Null;

end record;

end;

--Top of file (For Ada 83 compiler)

With Current_Exception;

…

-- Exception block

exception

when others =>

    error_message(“Exception “ &

        Current_Exception.Exception_Name &

        “ propagated out of Export_Overlay”);

end Export_Overlay;

--Top of file (For Ada 95 compiler)

With Ada.Exceptions;

…

-- Exception block

exception

when Event: others =>

    error_message(“Exception “ &

        Ada.Exceptions.Exception_Name(Event) &

        “ propagated out of Export_Overlay”);

end Export_Overlay;

-- Significant portion of “exceptions.a”

#ifdef C2_2d

With Current_Exception;

#define EXCEPTION_EVENT(x)  x

#define EXCEPTION_NAME  Current_Exception.Exception_Name

#else

#ifdef LCU

With Ada.Exceptions;

#define EXCEPTION_EVENT(x)  Event: x

#define EXCEPTION_NAME  Ada.Exceptions.Exception_Name(Event)

#else

#error “Must define Core version number”

#endif

#endif

Figure 2: Exception Handling Example for Ada 83
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key variable was still zero, then the
object had not been initialized at com-
pile time so it had to be initialized at run
time. This may not be true of other
compilers, but it is of both of the Ada
compilers used for OIET.

There are additional problems when
interfacing between Ada and C++. Both
languages allow subprogram overload-
ing4 (including operators), but must work
with linkers that require unique symbol
names when assembling the program
from the separately compiled source
files. In order to do this, each compiler
makes unique symbol names by name
mangling (changing the name) but in dif-
ferent ways. For instance, two Ada func-
tions function calc(it: integer) return integer;
and function calc(it:float) return float; in the
package test become the linker symbols
_A_calc.3S10.test and _A_calc.4S10.test
respectively. The equivalent functions
declared in C++ become the linker sym-
bols _Z4calci and _Z4calcf respectively.
These exact linker symbols will be dif-
ferent depending on the compilers used.

C does not allow overloading so the
function names are not changed to
accommodate this feature. Both Ada
and C++ provide for linking with code
written in the C language. The simplest
way to resolve the name mangling issue
is to indicate to each compiler that it
will be interfacing with C even when
there will be no intermediate C func-
tion. For C++, the function will also
have to be a global function or a static
class method.

Different Ada Compilers,
One Code Base
Between the Ada 83 and 95 compilers,
there are differences in how some lan-
guage constructs are specified. In the
Ada 83 standard, there were suggestions
on how to use pragma statements to
export Ada symbols for use by other
languages and how to import symbols
from other languages for use by Ada.
The Ada 95 standard specified how
these interface pragmas are to be. But the
standard way is different than how our
Ada 83 compiler implemented them.

Also, when catching an OTHERS
exception, Ada 83 provides no standard
way to find out what specific exception
has been caught. The compiler that we
used has a set of functions that will
retrieve the exception name and the pro-
cedure in which the exception occurred
so that we can notify the user (through
the GUI) of the problem (see Figure 2).
Ada 95 provides a standard way to do
this, one different from the proprietary

method our Ada 83 compiler used to
implement this feature (see Figure 3).

Both the exception differences and
the interface pragma differences are
issues with parts of the language so they
could not be fixed by using an interme-
diate package. In C or C++, these types
of differences would usually be handled
by using preprocessor directives to per-
form conditional compilation and/or
macros. The Ada 83 compiler that we
are using has a proprietary preprocessor
similar to the C preprocessor but using
Ada-like syntax. The Ada 95 compiler
provides nothing like a preprocessor.
Several other solutions were considered,
but it was decided that using a pre-
processor would be the simplest to
implement. To illustrate what was done,
the exception example will be used
because it is slightly more complex.

The file preprocessor included with a
C compiler is simple in theory, substitut-
ing text and macros where the prepro-
cessing symbol appears. But when the
GNU C compiler was used with the pre-
process only directive, it objected to the
Ada code surrounding the preprocessor
code. The result was the same for the
GNU C++ compiler.

Brief consideration was given to
writing a preprocessor to meet our
needs, but to do it right seemed like a
two to three week task. In the hope that
someone else had encountered a similar

problem and already crafted a solution, a
search was undertaken at the two largest
open-source repositories on the internet:
<www.sourceforge.net> and <www.fresh
meat.net>. After exploring a few of the
resultant programs, filepp was found on
the later site. It turned out that it does
exactly what is needed but is also highly
configurable (in case it does not do what
is needed)5,6.

To use the preprocessor to do what
needs to be done, a file exceptions.a was
created that contains the substitutions
that need to be done. This file is written
such that if no version is specified, the
preprocessor will display an error (see
Figure 4). To use this file, an #include
exceptions.a is placed at the beginning of
the file where the other with directives
occur. The exception-handling portion
of the code is then rewritten to use the
macros (see Figure 5). For instance,
EXCEPTION_EVENT(x) is a macro
expecting text between the parenthesis
when used. This text will then be placed
where x appears in the text at the end of
the line (compare Figures 2 through 5).

If this were used on the file test.a to
produce the preprocessed version of the
file (test_p.a) for the Ada 95 compiler
(that we call Life Cycle Upgrade [LCU]),
the command filepp -DLCU -o test_p.a
test.a would run. Again, this would be
placed in the make file so that the pre-
processing is automatically performed

--Top of file (Before preprocessing)

#include exceptions.a

…

-- Exception block

exception

when EXCEPTION_EVENT(others) =>

    error_message(“Exception “ &

        EXCEPTION_NAME &

        “ propagated out of Export_Overlay”);

end Export_Overlay;

Figure 4: Significant Portion of “exceptions.a”

package VString is

type VString is limited private;

subtype C_String_Ptr is CString_Interfaces.C_String_Ptr;

  …

private

type String_Access is access String;

type VString is

record

cur_length : Natural := 0;

str_access : String_Access := Null;

end record;

end;

--Top of file (For Ada 83 compiler)

With Current_Exception;

…

-- Exception block

exception

when others =>

    error_message(“Exception “ &

        Current_Exception.Exception_Name &

        “ propagated out of Export_Overlay”);

end Export_Overlay;

--Top of file (For Ada 95 compiler)

With Ada.Exceptions;

…

-- Exception block

exception

when Event: others =>

    error_message(“Exception “ &

        Ada.Exceptions.Exception_Name(Event) &

        “ propagated out of Export_Overlay”);

end Export_Overlay;

-- Significant portion of “exceptions.a”

#ifdef C2_2d

With Current_Exception;

#define EXCEPTION_EVENT(x)  x

#define EXCEPTION_NAME  Current_Exception.Exception_Name

#else

#ifdef LCU

With Ada.Exceptions;

#define EXCEPTION_EVENT(x)  Event: x

#define EXCEPTION_NAME  Ada.Exceptions.Exception_Name(Event)

#else

#error “Must define Core version number”

#endif

#endif

Figure 5: Exception Handling Example for Preprocessor



on test.a when the program is built. The
Ada compiler receives the file test_p.a.

Conclusion
The reality of legacy development envi-
ronments and systems is that not all pro-
gramming problems can or should be
accomplished in the same language,
development environment or even the
latest versions of these tools. The real
world just is not that simple. And some-
times we have to choose the best tool
for the job from those available.
Interfacing with one or more other lan-
guages also requires knowledge of data
representations and how the languages
send and receive the data. Solutions can
be found that will allow maintaining the
same code base on two (or more) dis-
parate operating environments without
too much maintenance overhead.u

Notes
1. Both the Ada 83 and Ada 95 standards

allow for automatic garbage collection
but do not require that the memory be
reclaimed until after the type goes out
of scope (see <www.adaic.org/docs/
craft/html/ch11.htm> and <www.
adaic.org/docs/craft/html/ch11.

htm>). Since VString is declared in a
package, it will not go out of scope
until the program exits.

2. C and C++ use the ASCII null charac-
ter as a sentinel to mark the end of
strings. C++ has also defined a more
Ada-like string type as part of its stan-
dard.

3. Make is a program commonly used to
build programs from the component
source files. The make file or makefile
describes to make the order and how
to process each file to make the final
result.

4. Overloading is having two (or more)
subprograms with exactly the same
name but different parameter types.
The compiler determines which sub-
program to call by the types of the
parameters passed.

5. See the documentation at <www.
cabaret.demon.co.uk/filepp/>.

6. The substitutions done by filepp are
case-sensitive. In the case of these
files, the C convention of making
preprocessor symbols all uppercase
is used.
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ACM SIGAda
www.acm.org/sigada
Here you will find information on the special interest group
(SIG) Ada organization and pointers to current information
and resources for the Ada programming language. It is a
resource for the software community’s ongoing understanding
of the scientific, technical, and organizational aspects of the Ada
language's use, standardization, environments and implementa-
tions. This is ACM SIGAda’s latest effort to help expand  acces-
sibility to Ada information. They want to make this the one
stop for information on both SIGAda’s current activities and on
the Ada language and community at large. 

The Ada Information Clearinghouse
http://adaic.org/
The Web site provides articles on Ada applications, databases of
available compilers, current job offerings, and more. The Ada
Information Clearinghouse is managed by the Ada Resource
Association, a group of software tool vendors who support the
use of Ada for excellence in software engineering.

Ada Home
www.adahome.com
Since March 1994, this server provides a home to users and poten-
tial users of Ada, a modern programming language designed to
support sound software engineering principles and practices. The
Ada Home Floors and Rooms contain many unique tools and
resources to help expand knowledge and increase productivity. 

Ada World
www.adaworld.com
Ada World has been created essentially to bring the Ada pro-
gramming language a central place where Ada developers and
curious programmers can learn about Ada, see what is happen-
ing as far as Ada development projects go, and give a good idea
of what can be done with Ada. To reach this goal, Ada World
serves as a place where Ada developers can talk about Ada as well
as work on development projects.  

Ada Power
www.adapower.com
Ada possesses the ultimate in flexibility (oo and non-oo), real stan-
dardization, and validation, true cross-platform programming,
incredible compile time error checking, readable code, and support
of all levels of software engineering. As a way of contributing back
to the Ada community and to help advocate this powerful lan-
guage, AdaPower.com was formed, and includes on its Web site
examples of Ada source code that illustrate various features of the
language and programming techniques, various interfaces to pop-
ular operating systems (thick and thin level bindings), and exam-
ples of Ada source code that illustrate various algorithms; a col-
lection of packages for reuse in Ada programs; and articles on
implementing software in Ada.
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RTCA Document Order (DO)-178B
[1, 2] is a long-used standard mandat-

ed by the Federal Aviation Administration
(FAA) for the certification of commercial
airborne avionics systems containing
embedded software. In recent years, DO-
178B is also being applied, at least in prin-
ciple, to some non-commercial avionics
systems. Many of these systems may have
been developed with other standards in
mind. However, aspects of DO-178B are
being applied where certification will be
enforced in the future. The level of com-
pliance with DO-178B is typically influ-
enced by budget and schedule constraints.
In an increasing number of instances, the
military sector is at least considering DO-
178B certification.

While DO-178B may be viewed as an
eventual requirement for all airborne
avionics systems, commercial and military
systems alike, it is currently evaluated on a
case-by-case basis for military programs.
The impact of incorporating DO-178B
requirements on a program does not
come without significant impact to budget
and schedule. This impact varies depend-
ing upon the software level (A through E)
imposed on the application and is a critical
factor in the decision to pursue certifica-
tion (see Figure 1).

Other critical factors in determining
the impact of cost (budget and schedule)
include the size and complexity, the sys-
tem, and the maturity of the procedures
and processes utilized by the software
development and verification teams.
Companies with more mature processes
institutionalized across their organization
will be able to adapt much more effective-
ly and efficiently.

Impact to Budget and Schedule
While not yet a requirement for every mil-
itary avionics system, there are some pro-
grams that do impose DO-178B certifica-
tion. In this scenario, the cost and sched-

ule impact certainly needs to be accounted
for and minimized. When DO-178B certi-
fication is not imposed as a requirement,
the impact to the cost and schedule must
be measured against the benefits gained.
The argument that DO-178B adds signifi-
cant quality to a legacy system may be dis-
puted when examining the service history
of an avionics system that has countless
hours of flight time. However, DO-178B
processes may help identify potential defi-
ciencies in requirements definition and/or
testing by performing structural coverage
analysis. In this scenario, it may be difficult
to justify the budget and schedule impact
when DO-178B is not an imposed
requirement.

While the requirement to satisfy the
criteria outlined in DO-178B may appear
to be a daunting task for the engineering
teams who maintain legacy military avion-
ics systems, the effort of adapting the
legacy system may be easier (and cheaper)
than originally perceived. The key is to
accurately estimate the impact to budget

and schedule. While it is easy for engi-
neering teams to underestimate the bud-
get and schedule impact, it is also possible
to overestimate the impact by not taking
advantage of existing processes. To accu-
rately estimate the impact, companies can
and should take advantage of their exist-
ing planning documents and testing
processes.

Value in Legacy Systems
There are significant benefits for a legacy
avionics system to incorporate the objec-
tives outlined in DO-178B. Best practice
concepts have been derived by key mem-
bers of the aviation community through
implementing the certification process.
These best practices continue to be
refined and enhanced based on increased
use, evolved technology, and gained expe-
rience as evidenced by the evolution of
DO-178B.

The DO-178B specification enforces
good software engineering practices by
providing guidelines for the production of

Adapting Legacy Systems for DO-178B Certification

The avionics world is moving toward greater integration of avionics products used in both commercial and military aircraft.
Document Order (DO)-178B certification is now being required in some areas in the military (such as military aircraft fly-
ing in European civil airspace), and may be considered in others. It is possible to achieve a cost effective approach to enable
legacy systems to meet DO-178B certification requirements by performing a gap analysis to determine what existing activities
and artifacts can be reused for DO-178B certification and define the remaining tasks that need to be completed in order to
fulfill certification requirements.

Open Forum

Paul R. Hicks
AVISTA Incorporated

Level A

Failure has catastrophic impact. Most stringent

Structural Coverage Analysis (SCA) adds object code

analysis requirement.

Level B
Failure has hazardous/severe impact. More stringent

SCA and additional independence.

Level C
Failure has major impact. Adds SCA requirements.

Level D
Failure has minor impact. Requires verification against

high-level requirements.

Level E
Failure has no safety impact.

Figure 1: DO-178B Certification Levels A Through E



embedded software for airborne systems.
These guidelines ensure that the systems
perform their intended function with a
level of confidence in the safety of the
system. DO-178B serves simply as a
guideline outlining the objectives to be
met, the activities to be performed, and
the evidence to be supplied.

DO-178B does allow for alternate
methods for satisfying one or more objec-
tives [3]. These alternate methods can be
used in lieu of some of the more typical
methods described throughout DO-178B
requirements. However, alternate methods
are more of an art than a science. There
are several dependencies associated with
any of these alternate methods, and there
may or may not be opportunities to pur-
sue these alternate methods. If you are
considering an alternate method, consult
with a Designated Engineering Represen-
tative (DER) [4, 5] with experience in the
particular alternative method. With that
said, the focus of this article describes
using a more traditional approach.

Gap Analysis
One common misperception is that very
few artifacts can be reused to upgrade a
non-DO-178B certified legacy system to a
certified legacy system. A start-from-
scratch approach is too often the first
thought to retrofit DO-178B guidelines
within a legacy system. Misunderstanding
the scope of a project often leads to wild-
ly inaccurate estimates with regards to the
costs and schedules associated with elevat-
ing an application to the DO-178B stan-
dard. Individuals who are best qualified to
perform a gap analysis should know the
specific requirements for each software
level of DO-178B certification, under-
stand the existing processes of the legacy
system, and have the authority to make
decisions.

To accurately estimate the associated
costs and schedules, we recommend that
you follow these steps while performing a
gap analysis (see Figure 2).

Step 1: Determine the software level
(level A through E) that should be

assigned to your application. The soft-
ware level is determined by the severity of
the failure conditions on the aircraft and
its occupants. This is typically identified by
performing a system safety assessment as
described in DO-178B [1]. The software
level may be predictable based on the
functionality of the application with
respect to similar industry applications.

Step 2: Understand the guidelines identi-
fied in DO-178B. Those who have not
been involved with these certified systems
before can find the learning process over-
whelming. However, project teams that
are new to DO-178B can learn from the
several companies and organizations in
the industry that have acquired a breadth
of related experience.

The tables in Annex A of DO-178B
[1] summarize the software life cycle
process objectives and outputs by soft-
ware level. These tables can serve as the
foundation for your gap analysis to deter-
mine which activities are required to com-
ply with DO-178B.

Step 3: Determine what activities have
already been accomplished and how they
can be applied to the guidelines identified
in DO-178B. Many companies have solid
software development processes and pro-
cedures already in place. Even though the
software engineering activities that were
performed may not have focused on DO-
178B, these practices provide the most
likely opportunities for reuse if the foun-
dation behind the processes followed were
built on solid software engineering prac-
tices – whether driven by other industry
standards, industry certifications (such as
the Software Engineering Institute’s
Capability Maturity Model® Integration
[CMMI®] or International Organization
for Standardization [ISO] 9001), or good
engineering judgment. Credit for much of
the effort previously performed can be
used for activities and artifacts identified
in DO-178B. Refer to the sidebar for an
example of specific activities and artifacts
that can be applied to guidelines identified
in DO-178B.

Step 4: Take advantage of existing
processes currently employed that fully

or partially achieve compliance to DO-
178B. It is generally not cost-effective to
reinvent the wheel. The project team
should supplement existing processes
wherever possible. However, it is not cost-
effective to utilize every existing process,
especially if the process is not a useful
activity to attain DO-178B certification.
Consider eliminating processes not direct-
ly related to certification, or replacing
these ineffective processes with more effi-
cient ones.

By following these steps, your project
team should be able to establish which
objectives are completely satisfied, which
objectives are partially satisfied, and which
objectives are completely unsatisfied. The
list of activities and artifacts identified
within your gap analysis may vary with
each company. If solid practices and
processes are consistently implemented,
fewer deficiencies will be identified in your
gap analysis. If the practices and process-
es are uniformly institutionalized across
the company, the deficiencies identified in
the gap analysis should be similar across
different product lines with the same soft-
ware level.

Common Deficiencies
The lack of certification and planning
documents are typical examples of defi-
ciencies; specifically, documents necessary
for certification submittal. These docu-
ments are the Plan for Software Aspects
of Certification to describe your certifica-
tion plan, and the Software Accomplish-
ment Summary to illustrate compliance
with your certification plan. If planning
documents do exist, they often must be
modified to ensure that they address the
content described in DO-178B.

If you are using an implementation-
based testing approach, the conversion to
requirements-based testing could be cost-
ly and time consuming. DO-178B endors-
es a requirements-based functional testing
approach, where your test cases and pro-
cedures are based upon the software
requirements data. If you use this testing
approach, you will be able reuse your orig-
inal verification test suite. You probably
will need to enhance your requirements-
based test suite to ensure that the require-
ments are completely tested. In addition,
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Figure 2: Gap Analysis in Four Steps

® Capability Maturity Model and CMMI are registered in
the U.S. Patent and Trademark Office by Carnegie
Mellon University.
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requirements coverage analysis must be
performed to ensure all requirements have
been sufficiently addressed.

Another example of a deficiency is in
the area of structural coverage analysis.
The majority of the systems developed
outside DO-178B do not perform struc-
tural coverage analysis. Performing struc-
tural coverage analysis ensures that all
software constructs have been exercised
by the requirements-based test suite.
Software constructs that have not been
exercised are used to identify inadequacies
in the software requirements, shortcom-
ings in the requirements-based test cases
and procedures, deactivated code, and/or
dead code. Each shortcoming must be
resolved or justified.

Traceability
An area that is occasionally overlooked is
traceability. Traceability is used to illustrate
evidence of an association from an output
to its origination. Typical traceability activ-
ities may include the following types:
• Requirements traceability from the

lower-level requirements to the higher-
level requirements.

• Source code traceability from the
source code to the lower-level require-
ments.

• Test case and procedure traceability
from the test cases/procedures to the
lower-level requirements.
The goal of traceability is to be able to

follow a continuous thread throughout the
entire product life cycle to confirm the
link between the requirements data and its
associated source code and tests cases and
procedures.

Independence
Certain objectives of DO-178B also
require independence. Independence is
the separation of responsibility between
the developer and verifier to ensure no
implied biases are applied to the objective
under review. The objectives that require
independence vary with the software level
imposed on the system. It may be worth
considering applying independence wher-
ever feasible.

Configuration Controls
Some outputs of DO-178B have estab-
lished configuration management controls
imposed on them. Control categories
define the configuration management
control placed on each data item. The
control category placed upon a data item
also varies with the software level imposed
upon the system. Again, it may be worth
considering applying the more stringent
configuration controls wherever feasible.

Once you have established the defi-
ciencies found in the gap analysis, the next
step is to formulate a plan to resolve the
deficiencies.

Efficient Planning
As discussed earlier, the effort to obtain
the DO-178B certification does not come
without cost, effort, or risk. Even organi-
zations with previous DO-178B experi-
ence still experience unexpected pitfalls –
not unlike any software engineering effort.
A commitment from the stakeholders is
required in order to be successful.

With the information collected during
the gap analysis, you can then establish a
task list. Based on the findings in the gap
analysis, some of the tasks may be obvi-
ous and estimates can be easily applied.
For example, gathering the structural cov-
erage from the existing test suite can be
fairly straightforward. However, there may
be some tasks that cannot be easily esti-
mated until additional fact finding efforts
are completed. For example, to achieve
complete coverage, the effort to supple-
ment the requirements data and test suite
are strictly dependent upon the results of
the structural coverage analysis effort. For
this reason, you may want to consider a
phased approach.

Phased Approach
While a DO-178B requirement may not
yet have been imposed, start planning early
if there is an expectation that it will be
imposed in the future. If you employ a
phased approach, there are several benefits
that can be realized such as the following:
• The costs may be spread out over mul-

tiple fiscal years, easing the financial
impact.

• By spreading the work over a large
time span, you can utilize a smaller
engineering team.

• The higher risk items can be per-
formed earlier so that the risk can be
mitigated or addressed in advance of
the deadline.

• Activities that lead to better estimates
for follow-on activities can be per-
formed earlier so that the follow-on
activities can be more accurately esti-
mated in advance of the deadline.

• The team has the opportunity to learn
process changes earlier, thus gaining
familiarity and more insight to realize
process improvement opportunities.

• There is a longer history of subjective
evidence to support the project.
Using a phased approach enables you

to react more quickly and more effectively
when the DO-178B requirement is
imposed. It reduces the risk of having to
quickly assemble a large team for the pro-
ject at the last minute.

DERs
Involve a DER or equivalent early in the
determination process. A DER is an inde-
pendent specialist and an experienced
engineer designated by the FAA as having
authority to sign off on your project as a
representative of the FAA [5]. You should
establish a solid plan and have the DER
approve your plan as early as possible to
confirm your approach. In addition, make
sure that you execute to the plan. You are
not restricted from deviating from the
plan when and where it makes sense.
However, the deviations must be commu-
nicated to the DER as they are identified
to ensure approvals. The more familiar the
DER is with the plan and your execution
of the plan, the more likely it is to receive
the final acceptance of the certification
package. If you do not have a DER on
staff within your company, there are inde-
pendent DER consultants that your com-
pany can hire to work with you.

Conclusion
It is important to understand that cost
(both budget and schedule impact) is a sig-
nificant factor that often prevents organi-
zations that supply avionics systems from
providing fully DO-178B compliant soft-
ware when not required. While there are

Adapting a Non-DO-178B Certified System to a
DO-178B Certified System

Consider the example of a legacy Global Positioning System (GPS) portion of an iner-
tial navigation unit, in which the system would be required to upgrade to a DO-178B cer-
tified system in the future. The engineering team responsible for the upgrade assumed
that they would have to start over. But, by performing a gap analysis, they were able to
decrease the cost by a factor of six by taking advantage of existing activities previously
performed and existing legacy artifacts, such as planning documents, requirements
data, code, test cases and test results. They were able to reuse their requirements-
based testing procedures, and the system already had good processes in place
because they had adopted Software Engineering Institute Capability Maturity Model
Integration Level 5 processes when developing the original GPS software. 
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ways to reduce the cost impact, history
has shown that the cost generally pro-
hibits the implementation of DO-178B
compliance when it is not a requirement.
However, the industry is trending towards
some level of DO-178B consideration.
When it becomes a requirement, cost can
be minimized by taking credit for activi-
ties and artifacts already incurred and by
establishing cost effective and efficient
approaches to achieving DO-178B com-
pliance.

Converting non-DO-178B legacy sys-
tems to comply with DO-178B guidelines
will become more common as require-
ments such as the Global Air Traffic
Management program begin to enforce
DO-178B certification on all avionics sys-
tems that share the world’s airspace. Do
not wait until that day happens; get a head
start by integrating DO-178B within your
legacy systems now.

By performing a rigorous gap analysis,
your project team will be able to accurate-
ly access the cost and schedule involved in
developing and implementing a plan for
your legacy system to receive certification.
Bring in a DER early on in the develop-
ment process to ensure final acceptance
of DO-178B certification.u
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During World War I, more than one million French citizens
were killed, and another estimated four to five million

were wounded. Many French politicians and generals thought that
the Treaty of Versailles (which ended the war, and was supposed to
punish the defeated countries and prevent further conflict) was
insufficient protection. France was justifiably concerned that the
treaty was really just an armistice and that war would ultimately
resume (as it did – World War II). To protect France, many influ-
ential politicians and generals were in favor of an aggressive set of
fortifications. There were many studies and meetings, and based on
the consensus of opinion, the Maginot Line was built.

The Maginot Line, named after French minister of defense
André Maginot, was a line of concrete fortifications, tank obstacles,
machine gun posts, and other defenses which were built along the
Italian and German border. The French thought that these fortifi-
cations would slow down attacking forces, allowing the French time
to respond. Two places the Maginot line did not extend were the
Ardennes Forest (which was thought impassable) and the Belgium
border, because Belgium and France had recently signed an alliance.

When World War II began, the Germans did not view the
Ardennes Forest as impenetrable. More than a million troops and
1,500 tanks crossed Luxembourg, Belgium and then moved straight
through the Ardennes. On May 10, 1940, the German advance
started. The French government had to abandon Paris on May 13.
The conquest was swift and decisive.

History has sometimes viewed the Maginot Line as something
that was ineffectual. However, this viewpoint, in my opinion, is
vastly incorrect. The Maginot Line did exactly what it was supposed
to do – prevent a direct attack upon France’s Eastern border. The
few places upon the Maginot Line that were directly attacked by
German troops held out well. The concept was sound, the execu-
tion was just incomplete. There is a history lesson to be learned
here.

The theme of this issue is Ada 2005. Now, for those of you
who don’t know me, I’m an Ada zealot. I taught one of the first
U.S. Air Force-approved Ada training courses back at Keesler, AFB
in 1984. I taught Ada at the Air Force Academy starting in 1986.

Back in the 1980s, there were literally hundreds (possibly thou-
sands) of programming languages running around. Every defense
program and contractor used their own language (or variation of a
language). Most projects were in assembly language of some type,
making projects hard to maintain and upgrade. The initial vision of
Ada was to provide a common high-order programming language
that would allow Department of Defense (DoD) software that was
cheaper and quicker to develop and easier to maintain. Ada can be
described as a language that has facilities for real-time response,
concurrency, hardware access, and reliable run-time error handling.
In support of large-scale software engineering, it emphasizes
strong typing, data abstraction and encapsulation. Nothing bad in
this list – in fact, everything in this description sounds pretty good,
doesn’t it? So good, in fact, that back in 1983, Richard DeLauer,
then Under Secretary of Defense for Research and Engineering,
sent out a memo directing that:

The Ada programming language shall become the single
common programming language for Defense mission-criti-
cal applications. Effective 1 January 1984 for programs
entering Advanced Development and 1 July 1984 for pro-
grams entering Full-Scale Engineering Development, Ada
shall be the programming language.

The problem was that back in 1983 there weren’t many compil-
ers, tools, or experienced programmers. Compilers were slow and
tended to consume all the resources of even high-end computers.
The general feeling among us Ada zealots was that the DeLauer
memo was premature and actually worked against the cause of Ada.
Because of the lack of tools, compilers, and trained programmers,
many developers either received a waiver from the Ada mandate or
simply ignored the memo. Sort of like the Maginot line – folks just
went around it.

However, time has been good to Ada. It has been updated sev-
eral times, and the actual intent of the DeLauer memo (that high-
level languages be used to develop DoD software) has long since
been met. Back in the 1980s, as I said, there were literally hundreds
of languages being used. Today, most software is created using a rel-
ative few languages. C++ (nobody uses C anymore) and Java are
probably most used, and according to trends, C++ usage is going
down while Java is on the rise; Java provides almost all of the same
safety features (strong typing, data abstraction, encapsulation).
There are quite of few us who hold the opinion that Ada strongly
influenced Java – and that Java has C++ syntax, but Ada semantics.
Ada is still widely used outside of the United States, and Ada is used
worldwide in the avionics industry.

Ada is still a viable force in avionics simply because it’s very good
at what it was designed to do – provide high-quality code in safety-
critical environments. It has run-time features such as real-time and
parallel processing that are hard to find in any other language.

It’s all about safety and security – the same things that the
Maginot Line was designed to give. And, just like the Maginot Line,
it all lies in the execution.

— David A. Cook, Ph.D.
The AEgis Technologies Group, Inc.

<dcook@aegistg.com>

Additional Reading
1. Much of this research comes from <http://europeanhistory.

about.com/library/weekly/aa070601a.htm> and <http://
en.wikipedia.org/wiki/Maginot_Line>.

2. See <www.people.ku.edu/~nkinners/LangList/Extras/
langlist.htm> for a list of more than 3,000 languages.

3. See  <http://oop.rosweb.ru/> under Language List, then Ada.
4. See “Evolutionary Trends of Programming Languages.”

This excellent article can be found at <www.stsc.hill.
af.mil/crosstalk/2003/02/schorsch.html>.

5. “An Empirical Study of Programming Language Trends,”
Dios et. al., IEEE Software, May/June 2005.

Ada: The Maginot Line of Languages
-or-

OOnnee llaanngguuaaggee ttoo rruullee tthheemm aallll,, OOnnee llaanngguuaaggee ttoo ffiinndd tthheemm,, 
OOnnee llaanngguuaaggee ttoo bbrriinngg tthheemm aallll aanndd iinn tthhee ddaarrkknneessss bbiinndd tthheemm..

(with apologies to J.R.R.Tolkien)
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